Leif Helth Jensen
Schering AG
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Leif Helth Jensen.
Brain Research | 1990
Assunta Imperato; Tage Honore; Leif Helth Jensen
Perfusion with quisqualate (5 x 10(-6) M) and kainate (5 x 10(-7) M), selective agonists of glutamate receptors, enhanced the release of dopamine in both caudate and accumbens nuclei of freely-moving rats, measured by the transcerebral microdialysis technique. In contrast, N-methyl-D-aspartate (NMDA) did not affect dopamine release, except at very high concentrations (10(-2) M). The quisqualate-kainate antagonist, FG 9041 (DNQX), antagonized the elevation of dopamine release induced by quisqualate and, furthermore, reduced that of kainate. CPP, a selective NMDA antagonist, did not counteract the quisqualate- or kainate-induced stimulation of dopamine release. The enhancement of dopamine release after quisqualate and kainate was accompanied by behavioural stimulation characterized by grooming, rearing, hypermotility with sniffing and confined sniffing. This behavioural syndrome could be blocked by haloperidol. Conversely, perfusion with NMDA did not activate behaviour even at high concentrations. These results indicate that the dopaminergic system, within the caudate and the accumbens nuclei, is under glutamatergic control through kainate and quisqualate receptors, while the NMDA receptors do not appear to be involved.
Brain Research | 1993
Martin Fabricius; Leif Helth Jensen; Martin Lauritzen
We have examined the effect of cortical spreading depression (SD) and anoxic depolarization (AD) on the interstitial concentration changes of amino acids (AA) in the neocortex of anesthetized rats using microdialysis and HPLC. Accompanying SD alanine increased to 126 +/- 11%, arginine to 116 +/- 3%, aspartate to 160 +/- 17%, glutamate to 163 +/- 9%, glycine to 158 +/- 21%, serine to 125 +/- 9%, and taurine to 172 +/- 15% (mean +/- 1 S.E.M.). The increases lasted for about 1 min. Histidine decreased to 74% +/- 4% at 1 min following SD, and returned to normal 4 min later. Cardiac arrest triggered AD after approximately 2 min, immediately followed by changes of interstitial AAs. At 5 min after AD alanine had increased to 183 +/- 13%, aspartate to 3,458 +/- 656%, GABA to 338 +/- 35%, glutamate to 1,696 +/- 546%, glycine to 297 +/- 37%, serine to 153 +/- 12%, and taurine to 1721 +/- 98% as compared to control values (mean +/- 1 S.E.M.). Histidine decreased to 78 +/- 2% at 3 min following AD while arginine exhibited insignificant variations around the baseline. The increase of glutamate during SD is consistent with activation of NMDA-receptors as an essential requirement for this reaction. The increase of AAs may also contribute to the sequence of events leading to AD, though the exact mechanism remains unknown. SD is an important pathophysiological mechanism of the ischemic penumbra associated with focal cerebral ischemia, while AD reflects the electrophysiological status of the infarct core.(ABSTRACT TRUNCATED AT 250 WORDS)
Brain Research Bulletin | 1987
Leif Helth Jensen; David Norman Stephens; Martin Sarter; Erling N. Petersen
Abstract Experiments with benzodiazepine receptor ligands in two paradigms involving cognitive processing were performed in order to test whether the concept of bidirectional effects of benzodiazepine receptor ligands could also be applied to cognitive functions. Benzodiazepine receptor agonists like chlordiazepoxide, lorazepam, ZK 93423 and ZK 91296 induced amnesia in a passive avoidance paradigm. Mice treated with the benzodiazepine receptor antagonist, ZK 93426, reached a learning criterion after fewer foot-shocks than saline treated mice both in naive animals and in scopolamine pre-treated animals. Furthermore, ZK 93426, attenuated the amnesic effect of corneal electroshock. The inverse agonists FG 7142 and DMCM decreased the detrimental effect of scopolamine on retrieval. In a signal detection paradigm, chlordiazepoxide impaired signal detection. In aged rats ZK 93426, ZK 90886 and FG 7142 had no effect on signal detection but ZK 93426 and FG 7142 attenuated the impairment of signal detection induced by scopolamine. These effects of benzodiazepine receptor ligands may reflect changes in arousal/vigilance, suggesting that BZ inverse agonists may have useful properties in enhancing vigilance.
Brain Research Bulletin | 1987
David Norman Stephens; Herbert Schneider; Wolfgang Kehr; Leif Helth Jensen; Erling N. Petersen; T. Honore
Several beta-carbolines and other benzodiazepines (BZ) receptor ligands have been investigated for anxiolytic or anxiogenic action in 4 unrelated animal models of anxiety using rats. The substances could be grouped into essentially 2 groups. The first, anxiolytics, exhibited antipunishment activity in a lick-suppression test, antagonised the discriminative stimulus provided by pentylenetetrazol, resembled chlordiazepoxide (CDP) in a drug discrimination test, and reduced the rise in plasma corticosterone levels following swim stress. Such substances included several benzodiazepines, the beta-carboline ZK 93 423, and the triazolapyridazine CL 218 872. A subgroup of anxiolytics were active in only some of these tests. They included two beta-carbolines, ZK 91 296 and ZK 95 962, and the pyrazoloquinoline CGS 9896, and these 3 substances were also distinguishable in not producing rate-decreasing effects in any of the 3 operant tests. The second group were anxiogenic in that they produced a discriminative stimulus resembling that of PTZ, they antagonised the CDP cue, exhibited propunishment effects in the lick-suppression test, and themselves caused increases in plasma corticosterone in otherwise unstressed animals. Such substances included the beta-carbolines DMCM, FG 7142 and ZK 90 886, and the pyrazoloquinoline CGS 8216. Two substances, Ro 15-1788 and ZK 93 426 had little or only weak activity in any test. The classification of these substances into anxiolytics or anxiogenics could be predicted qualitatively both by their ability to enhance (anxiolytics) or decrease the binding of 35S-TBPS to rat brain membranes and by whether their own binding was increased (anxiolytics) by adding the GABA agonist muscimol to the in vitro incubation medium. For the limited number of substances for which full data was available, there was also a quantitative relationship between the degree of enhancement of 35S-TBPS binding by a substance and its potency in the CDP cue test when such potency was expressed as numbers of BZ receptors occupied at the ED50 value in the pharmacological test. Furthermore, for the anxiolytics, activity in the CDP cue correlated significantly with potency in 2 other tests. Otherwise, surprisingly weak correlations existed between potencies in the different tests. In particular, the beta-carboline ZK 95 962 was highly potent in antagonising the PTZ cue but inactive in both a conflict test and in protecting against stress. These results are discussed in terms of differences in the neuropharmacologies of the 4 tests and in selectivity of the BZ receptor ligands for subtypes of BZ receptor.
European Journal of Pharmacology | 1989
Malcolm J. Sheardown; Jorgen Drejer; Leif Helth Jensen; Carsten E. Stidsen; Tage Honore
5.7-Dinitro-quinoxaline-2.3-dione (MNQX) displaced [3H]glycine binding to cortical membranes but had no effect n [3H]3-((+/-)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid ([3H]CPP) binding. MNQX potently antagonized N-methyl-D-aspartate (NMDA)-evoked release of [3H]GABA from cultured cortical neurones, NMDA evoked spreading depression and NMDA depolarizations in the rat neo-cortex. All of these responses were reversed by addition of glycine to the perfusion media. These results suggested that MNQX is an antagonist at the strychnine-insensitive glycine receptor associated with the NMDA receptor/ionophore complex. Furthermore the compound was found to antagonise audiogenic seizures in DBA-2 mice indicating the potential of glycine antagonists of this type in anticonvulsant therapy.
European Journal of Pharmacology | 1987
Erling N. Petersen; Leif Helth Jensen
Treatment of mice with lorazepam 10 mg/kg p.o. or FG 7142 40 mg/kg i.p. once a day for 14 days changed the effects of benzodiazepine (BZ) receptor ligands injected acutely on the threshold of pentylenetetrazol (PTZ)-induced seizures. The effects of the two pretreatments differed qualitatively as well as quantitatively. Lorazepam elicited a shift in the effects of all BZ receptor ligands tested, whereby the agonists lorazepam and ZK 93423 now acted like partial agonists given acutely, the partial agonist ZK 91296 acted like an antagonist and the antagonists Ro 15-1788 and ZK 93426 like partial inverse agonists. The proconvulsant effects of the partial inverse agonist FG 7142 and the full inverse agonist DMCM on the PTZ-induced seizures did not change. However, FG 7142 became a full inverse agonist i.e. became convulsant, and DMCM may have increased in potency as a convulsant. After FG 7142 pretreatment lorazepam and ZK 93423 behaved like partial agonists given acutely whereas there was no change in effect for ZK 91296, Ro 15-1788 and ZK 93426. FG 7142 became convulsant (i.e. kindling occurred) and the potency of DMCM as a convulsant was non-significantly increased, while their proconvulsant effects with respect to PTZ-induced seizures were not altered. The fact that the effects of the two very different pretreatments on the BZ receptor ligand continuum were in the same direction may be explainable by assuming two different mechanisms, both of which may involve the GABA receptors.
European Journal of Pharmacology | 1998
Claus Mathiesen; Thomas Varming; Leif Helth Jensen
The effects of four glutamate receptor antagonists on alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)- and N-methyl-D-aspartate (NMDA)-responses were evaluated using both in vitro and in vivo electrophysiological techniques: whole cell patch-clamp recordings from cultured mouse cortical neurones and microiontophoresis in the rat hippocampus. The compounds tested were NBQX (2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline), GYKI 52466 (1-(4-amino-phenyl)-4-methyl-7,8-methyl-endioxyl-5H-2,3-benzodiaze pine), PNQX (pyrido[3, 4-f]quinoxaline-2,3-dione, 1,4,7,8,9,10-hexahydro-9-methyl-6-nitro-, methanesulfonate), NS377 (7-ethyl-5-phenyl-1,6,7,8-tetrahydro-1,7-diaza-as-indacene-2 ,3-dione), and MK-801 ((+)-5-methyl-10,11-dihydro-5H-dibenz(a,d)cycloheptene-5,10-imine hydrogen maleate). In vitro, the IC50 values (in microM) for inhibition of AMPA-evoked inward currents were approximately 0.4 for NBQX, approximately 7.5 for GYKI 52466, approximately 1 for PNQX and approximately 15 for NS377. PNQX and NS377 also inhibited NMDA-induced currents with IC50 values at approximately 5 and approximately 18 microM, respectively, while NBQX at 60 microM and GYKI 52466 at 100 microM had only weak effects. The ED50 values in micromol/kg i.v. for inhibition of AMPA-evoked hippocampal neuronal spike activity in vivo were approximately 32 for NBQX, approximately 19 for GYKI 52466, approximately 17 for PNQX and approximately 11 for NS377 with efficacy values (maximal inhibition) between 71% and 81%. The ED50 values (in [Lmol/kg i.v.) and efficacy values for inhibition of NMDA-evoked hippocampal neuronal spike activity were approximately 28 with an efficacy of 61% for NBQX, approximately 16 with 35% for PNQX and approximately 6 with 61% for NS377. GYKI 52466 did not significantly affect NMDA responses, whereas MK-801 showed NMDA specificity in vivo.
Bioorganic & Medicinal Chemistry Letters | 1993
Frank Watjen; Elsebet Ø. Nielsen; Jorgen Drejer; Leif Helth Jensen
Abstract New isatin oximes are shown to be highly selective AMPA/kainate antagonists showing no antogonism of NMDA responses. In an AMPA seizure model in mice of the disclosed compounds has anticonvulsant effects both after i.v. and p.o. dosing.
Brain Research Bulletin | 1987
Erling N. Petersen; Leif Helth Jensen
Mice were given chronic treatment with lorazepam 10 mg/kg PO or FG 7142 40 mg/kg IP once a day for 14 days. The pretreatments with lorazepam and FG 7142 did not change the sensitivity of the mice to the convulsant effect of DMCM. Lorazepam pretreated mice showed a significantly lower sensitivity to the anticonvulsant effects of the benzodiazepine (BZ) receptor ligands lorazepam, ZK 93423, ZK 91296, Ro 15-1788 and ZK 93426 administered acutely by the IP route when challenged with DMCM 24 hr after the last dose of lorazepam. FG 7142 pretreated mice showed a significantly lower sensitivity to the anticonvulsant effect of the two agonists lorazepam and ZK 93423 and to the antagonist Ro 15-1788, whereas the effects of ZK 91296 and ZK 93426 were left unchanged. The reduced DMCM antagonistic effects of the BZ receptor ligands may indicate that these ligands may either have lost some of their affinity to those BZ receptors being responsible for the DMCM-induced seizures or they may have lost some efficacy in allosterically inhibiting DMCM binding or as a third possibility may have lost efficacy at a BZ receptor site downstream to the seizure-inducing center in the brain.
Journal of Pharmacology and Experimental Therapeutics | 1990
David N. Stephens; H H Schneider; W Kehr; J S Andrews; K J Rettig; L Turski; R Schmiechen; J D Turner; Leif Helth Jensen; E N Petersen