Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leif Steil is active.

Publication


Featured researches published by Leif Steil.


Journal of Bacteriology | 2003

Genome-Wide Transcriptional Profiling Analysis of Adaptation of Bacillus subtilis to High Salinity

Leif Steil; Tamara Hoffmann; Ina Budde; Uwe Völker; Erhard Bremer

The gram-positive soil bacterium Bacillus subtilis often faces increases in the salinity in its natural habitats. A transcriptional profiling approach was utilized to investigate both the initial reaction to a sudden increase in salinity elicited by the addition of 0.4 M NaCl and the cellular adaptation reactions to prolonged growth at high salinity (1.2 M NaCl). Following salt shock, a sigB mutant displayed immediate and transient induction and repression of 75 and 51 genes, respectively. Continuous propagation of this strain in the presence of 1.2 M NaCl triggered the induction of 123 genes and led to the repression of 101 genes. In summary, our studies revealed (i) an immediate and transient induction of the SigW regulon following salt shock, (ii) a role of the DegS/DegU two-component system in sensing high salinity, (iii) a high-salinity-mediated iron limitation, and (iv) a repression of chemotaxis and motility genes by high salinity, causing severe impairment of the swarming capability of B. subtilis cells. Initial adaptation to salt shock and continuous growth at high salinity share only a limited set of induced and repressed genes. This finding strongly suggests that these two phases of adaptation require distinctively different physiological adaptation reactions by the B. subtilis cell. The large portion of genes with unassigned functions among the high-salinity-induced or -repressed genes demonstrates that major aspects of the cellular adaptation of B. subtilis to high salinity are unexplored so far.


Journal of Bacteriology | 2010

A Comprehensive Proteomics and Transcriptomics Analysis of Bacillus subtilis Salt Stress Adaptation

Hannes Hahne; Ulrike Mäder; Andreas Otto; Florian Bonn; Leif Steil; Erhard Bremer; Michael Hecker; Dörte Becher

In its natural habitats, Bacillus subtilis is exposed to changing osmolarity, necessitating adaptive stress responses. Transcriptomic and proteomic approaches can provide a picture of the dynamic changes occurring in salt-stressed B. subtilis cultures because these studies provide an unbiased view of cells coping with high salinity. We applied whole-genome microarray technology and metabolic labeling, combined with state-of-the-art proteomic techniques, to provide a global and time-resolved picture of the physiological response of B. subtilis cells exposed to a severe and sudden osmotic upshift. This combined experimental approach provided quantitative data for 3,961 mRNA transcription profiles, 590 expression profiles of proteins detected in the cytosol, and 383 expression profiles of proteins detected in the membrane fraction. Our study uncovered a well-coordinated induction of gene expression subsequent to an osmotic upshift that involves large parts of the SigB, SigW, SigM, and SigX regulons. Additionally osmotic upregulation of a large number of genes that do not belong to these regulons was observed. In total, osmotic upregulation of about 500 B. subtilis genes was detected. Our data provide an unprecedented rich basis for further in-depth investigation of the physiological and genetic responses of B. subtilis to hyperosmotic stress.


Transfusion | 2007

Profiling of alterations in platelet proteins during storage of platelet concentrates

Thomas Thiele; Leif Steil; Simon Gebhard; Christian Scharf; Elke Hammer; Matthias Brigulla; Norbert Lubenow; Kenneth J. Clemetson; Uwe Völker; Andreas Greinacher

BACKGROUND: The quality of platelet concentrates (PCs) is primarily determined in vitro by selective methods (e.g., pH, aggregometry), which provide only limited information on certain platelet (PLT) characteristics. In contrast, proteomic technologies provide a comprehensive overview of the PLT proteome. High interassay variability, however, limits meaningful assessment of samples taken from the same product over time or before and after processing.


Journal of Bacteriology | 2002

Genomewide Transcriptional Analysis of the Cold Shock Response in Bacillus subtilis

Carsten L. Beckering; Leif Steil; Michael H. W. Weber; Uwe Völker; Mohamed A. Marahiel

Previous studies with two-dimensional gel electrophoresis techniques revealed that the cold shock response in Bacillus subtilis is characterized by rapid induction and accumulation of two classes of specific proteins, which have been termed cold-induced proteins (CIPs) and cold acclimatization proteins (CAPs), respectively. Only recently, the B. subtilis two-component system encoded by the desKR operon has been demonstrated to be essential for the cold-induced expression of the lipid-modifying desaturase Des, which is required for efficient cold adaptation of the membrane in the absence of isoleucine. At present, one of the most intriguing questions in this research field is whether DesKR plays a global role in cold signal perception and transduction in B. subtilis. In this report, we present the first genomewide transcriptional analysis of a cold-exposed bacterium and demonstrate that the B. subtilis two-component system DesKR exclusively controls the desaturase gene des and is not the cold-triggered regulatory system of global relevance. In addition to this, we identified a set of genes that might participate as novel players in the cold shock adaptation of B. subtilis. Two cold-induced genes, the elongation factor homolog ylaG and the sigma(L)-dependent transcriptional activator homolog yplP, have been examined by construction and analysis of deletion mutants.


Transfusion | 2009

A novel approach to pathogen reduction in platelet concentrates using short-wave ultraviolet light.

Harald Mohr; Leif Steil; Ute Gravemann; Thomas Thiele; Elke Hammer; Andreas Greinacher; Thomas Müller; Uwe Völker

BACKGROUND: Transfusion of platelet concentrates (PCs) is the basic treatment for severe platelet disorders. PCs carry the risk of pathogen transmission, especially bacteria. Pathogen reduction (PR) by addition of photochemical reagents and irradiation with visible or ultraviolet (UV) light can significantly reduce this risk. We present a novel approach for PR in PCs employing UVC light alone.


Transfusion | 2009

BLOOD COMPONENTS: A novel approach to pathogen reduction in platelet concentrates using short‐wave ultraviolet light

Harald Mohr; Leif Steil; Ute Gravemann; Thomas Thiele; Elke Hammer; Andreas Greinacher; Thomas Müller; Uwe Völker

BACKGROUND: Transfusion of platelet concentrates (PCs) is the basic treatment for severe platelet disorders. PCs carry the risk of pathogen transmission, especially bacteria. Pathogen reduction (PR) by addition of photochemical reagents and irradiation with visible or ultraviolet (UV) light can significantly reduce this risk. We present a novel approach for PR in PCs employing UVC light alone.


Clinical and Vaccine Immunology | 2009

Human Immune Proteome in Experimental Colonization with Staphylococcus aureus

Silva Holtfreter; Thi Thu Hoai Nguyen; Heiman Wertheim; Leif Steil; Harald Kusch; Quoc Phong Truong; Susanne Engelmann; Michael Hecker; Uwe Völker; Alex van Belkum; Barbara M. Bröker

ABSTRACT More than 20% of adults are persistently colonized with Staphylococcus aureus. When hospitalized, these carriers have increased risks of infection with their own strains. However, a recent study demonstrated a lower incidence of bacteremia-related death among carriers than among noncarriers, raising the question whether the adaptive immune system plays a protective role. In fact, S. aureus carriers mount a highly specific neutralizing antibody response against superantigens of their colonizing strains. We now used 2-dimensional immunoblotting to investigate the profiles of antibodies from healthy individuals against S. aureus extracellular proteins. Moreover, we tested whether symptom-free experimental colonization of these individuals with an S. aureus strain of low virulence, 8325-4, is sufficient to induce an antibody response. Sera obtained before and 4 weeks after colonization were screened for immunoglobulin G (IgG) antibody binding to extracellular staphylococcal proteins. At baseline, most volunteers harbored IgG directed against conserved virulence factors, including alpha-hemolysin (Hla), beta-hemolysin (Hlb), phospholipase C (Plc), staphylococcal serine protease (SspA), and cysteine protease (SspB). However, the variability of spot patterns and intensities was striking and could be important in case of infection. Experimental nasal colonization with S. aureus 8325-4 did not elicit new antibodies or boost the humoral response. Thus, the high antibody prevalence in humans is likely not induced by short-term nasal colonization, and presumably minor infections are required to trigger anti-S. aureus antibody responses.


Journal of Bacteriology | 2013

Osmotic Control of opuA Expression in Bacillus subtilis and Its Modulation in Response to Intracellular Glycine Betaine and Proline Pools

Tamara Hoffmann; Annette Wensing; Margot Brosius; Leif Steil; Uwe Völker; Erhard Bremer

Glycine betaine is an effective osmoprotectant for Bacillus subtilis. Its import into osmotically stressed cells led to the buildup of large pools, whose size was sensitively determined by the degree of the osmotic stress imposed. The amassing of glycine betaine caused repression of the formation of an osmostress-adaptive pool of proline, the only osmoprotectant that B. subtilis can synthesize de novo. The ABC transporter OpuA is the main glycine betaine uptake system of B. subtilis. Expression of opuA was upregulated in response to both sudden and sustained increases in the external osmolarity. Nonionic osmolytes exerted a stronger inducing effect on transcription than ionic osmolytes, and this was reflected in the development of corresponding OpuA-mediated glycine betaine pools. Primer extension analysis and site-directed mutagenesis pinpointed the osmotically controlled opuA promoter. Deviations from the consensus sequence of SigA-type promoters serve to keep the transcriptional activity of the opuA promoter low in the absence of osmotic stress. opuA expression was downregulated in a finely tuned manner in response to increases in the intracellular glycine betaine pool, regardless of whether this osmoprotectant was imported or was newly synthesized from choline. Such an effect was also exerted by carnitine, an effective osmoprotectant for B. subtilis that is not a substrate for the OpuA transporter. opuA expression was upregulated in a B. subtilis mutant that was unable to synthesize proline in response to osmotic stress. Collectively, our data suggest that the intracellular solute pool is a key determinant for the osmotic control of opuA expression.


Journal of Immunology | 2008

Immune Cell Activation by Enterotoxin Gene Cluster (egc)-Encoded and Non-egc Superantigens from Staphylococcus aureus

Dorothee Grumann; Sandra S. Scharf; Silva Holtfreter; Christian Kohler; Leif Steil; Susanne Engelmann; Michael Hecker; Uwe Völker; Barbara M. Bröker

The species Staphylococcus aureus harbors 19 superantigen gene loci, six of which are located in the enterotoxin gene cluster (egc). Although these egc superantigens are far more prevalent in clinical S. aureus isolates than non-egc superantigens, they are not a prominent cause of toxic shock. Moreover, neutralizing Abs against egc superantigens are very rare, even among carriers of egc-positive S. aureus strains. In search of an explanation, we have tested two non-exclusive hypotheses: 1) egc and non-egc superantigens have unique intrinsic properties and drive the immune system into different directions and 2) egc and non-egc superantigens are released by S. aureus under different conditions, which shape the immune response. A comparison of three egc (SEI, SElM, and SElO) and three non-egc superantigens (SEB, SElQ, and toxic shock syndrome toxin-1) revealed that both induced proliferation of human PBMC with comparable potency and elicited similar Th1/Th2-cytokine signatures. This was supported by gene expression analysis of PBMC stimulated with one representative superantigen from each group (SEI and SEB). They induced very similar transcriptional changes, especially of inflammation-associated gene networks, corresponding to a very strong Th1- and Th17-dominated immune response. In contrast, the regulation of superantigen release differed markedly between both superantigen groups. Egc-encoded proteins were secreted by S. aureus during exponential growth, while non-egc superantigens were released in the stationary phase. We conclude that the distinct biological behavior of egc and non-egc superantigens is not due to their intrinsic properties, which are very similar, but caused by their differential release by S. aureus.


Transfusion Medicine Reviews | 2014

Proteome changes in platelets after pathogen inactivation--an interlaboratory consensus.

Michel Prudent; Angelo D’Alessandro; Jean-Pierre Cazenave; Dana V. Devine; Christian Gachet; Andreas Greinacher; Niels Lion; Peter Schubert; Leif Steil; Thomas Thiele; Jean-Daniel Tissot; Uwe Völker; Lello Zolla

Pathogen inactivation (PI) of platelet concentrates (PCs) reduces the proliferation/replication of a large range of bacteria, viruses, and parasites as well as residual leucocytes. Pathogen-inactivated PCs were evaluated in various clinical trials showing their efficacy and safety. Today, there is some debate over the hemostatic activity of treated PCs as the overall survival of PI platelets seems to be somewhat reduced, and in vitro measurements have identified some alterations in platelet function. Although the specific lesions resulting from PI of PCs are still not fully understood, proteomic studies have revealed potential damages at the protein level. This review merges the key findings of the proteomic analyses of PCs treated by the Mirasol Pathogen Reduction Technology, the Intercept Blood System, and the Theraflex UV-C system, respectively, and discusses the potential impact on the biological functions of platelets. The complementarities of the applied proteomic approaches allow the coverage of a wide range of proteins and provide a comprehensive overview of PI-mediated protein damage. It emerges that there is a relatively weak impact of PI on the overall proteome of platelets. However, some data show that the different PI treatments lead to an acceleration of platelet storage lesions, which is in agreement with the current model of platelet storage lesion in pathogen-inactivated PCs. Overall, the impact of the PI treatment on the proteome appears to be different among the PI systems. Mirasol impacts adhesion and platelet shape change, whereas Intercept seems to impact proteins of intracellular platelet activation pathways. Theraflex influences platelet shape change and aggregation, but the data reported to date are limited. This information provides the basis to understand the impact of different PI on the molecular mechanisms of platelet function. Moreover, these data may serve as basis for future developments of PI technologies for PCs. Further studies should address the impact of both the PI and the storage duration on platelets in PCs because PI may enable the extension of the shelf life of PCs by reducing the bacterial contamination risk.

Collaboration


Dive into the Leif Steil's collaboration.

Top Co-Authors

Avatar

Uwe Völker

University of Greifswald

View shared research outputs
Top Co-Authors

Avatar

Elke Hammer

University of Greifswald

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Thiele

University of Greifswald

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge