Leif Stenke
Karolinska University Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Leif Stenke.
Lancet Oncology | 2011
Hagop M. Kantarjian; Andreas Hochhaus; Giuseppe Saglio; Carmino Antonio de Souza; Ian W. Flinn; Leif Stenke; Yeow Tee Goh; Gianantonio Rosti; Hirohisa Nakamae; Neil Gallagher; Albert Hoenekopp; Rick E. Blakesley; Richard A. Larson; Timothy P. Hughes
BACKGROUND Nilotinib has shown greater efficacy than imatinib in patients with newly diagnosed Philadelphia chromosome-positive chronic myeloid leukaemia (CML) in chronic phase after a minimum follow-up of 12 months. We present data from the Evaluating Nilotinib Efficacy and Safety in clinical Trials-newly diagnosed patients (ENESTnd) study after a minimum follow-up of 24 months. METHODS ENESTnd was a phase 3, multicentre, open-label, randomised study. Adult patients were eligible if they had been diagnosed with chronic phase, Philadelphia chromosome-positive CML within the previous 6 months. Patients were randomly assigned (1:1:1) to receive nilotinib 300 mg twice a day, nilotinib 400 mg twice a day, or imatinib 400 mg once a day, all administered orally, by use of a computer-generated randomisation schedule, using permuted blocks, and stratified according to Sokal score. Efficacy results are reported for the intention-to-treat population. The primary endpoint was major molecular response at 12 months, defined as BCR-ABL transcript levels on the International Scale (BCR-ABL(IS)) of 0·1% or less by real-time quantitative PCR in peripheral blood. This study is registered with ClinicalTrials.gov, number NCT00471497. FINDINGS 282 patients were randomly assigned to receive nilotinib 300 mg twice daily, 281 to receive nilotinib 400 mg twice daily, and 283 to receive imatinib. By 24 months, significantly more patients had a major molecular response with nilotinib than with imatinib (201 [71%] with nilotinib 300 mg twice daily, 187 [67%] with nilotinib 400 mg twice daily, and 124 [44%] with imatinib; p<0·0001 for both comparisons). Significantly more patients in the nilotinib groups achieved a complete molecular response (defined as a reduction of BCR-ABL(IS) levels to ≤0·0032%) at any time than did those in the imatinib group (74 [26%] with nilotinib 300 mg twice daily, 59 [21%] with nilotinib 400 mg twice daily, and 29 [10%] with imatinib; p<0·0001 for nilotinib 300 mg twice daily vs imatinib, p=0·0004 for nilotinib 400 mg twice daily vs imatinib). There were fewer progressions to accelerated or blast phase on treatment, including clonal evolution, in the nilotinib groups than in the imatinib group (two with nilotinib 300 mg twice daily, five with nilotinib 400 mg twice daily, and 17 with imatinib; p=0·0003 for nilotinib 300 mg twice daily vs imatinib, p=0·0089 for nilotinib 400 mg twice daily vs imatinib). At 24 months, survival was comparable in all treatment groups, but fewer CML-related deaths had occurred in both the nilotinib groups than in the imatinib group (five with nilotinib 300 mg twice daily, three with nilotinib 400 mg twice daily, and ten with imatinib). Overall, the only grade 3 or 4 non-haematological adverse events that occurred in at least 2·5% of patients were headache (eight [3%] with nilotinib 300 mg twice daily, four [1%] with nilotinib 400 mg twice daily, and two [<1%] with imatinib) and rash (two [<1%], seven [3%], and five [2%], respectively). Grade 3 or 4 neutropenia was more common with imatinib than with either dose of nilotinib (33 [12%] with nilotinib 300 mg twice daily, 30 [11%] with nilotinib 400 mg twice daily, and 59 [21%] with imatinib). Serious adverse events were reported in eight additional patients in the second year of the study (four with nilotinib 300 mg twice daily, three with nilotinib 400 mg twice daily, and one with imatinib). INTERPRETATION Nilotinib continues to show better efficacy than imatinib for the treatment of patients with newly diagnosed CML in chronic phase. These results support nilotinib as a first-line treatment option for patients with newly diagnosed disease. FUNDING Novartis.
Blood | 2013
Stephen H. Petersdorf; Kenneth J. Kopecky; Marilyn L. Slovak; Cheryl L. Willman; Thomas J. Nevill; Joseph Brandwein; Richard A. Larson; Harry P. Erba; Patrick J. Stiff; Robert K. Stuart; Roland B. Walter; Martin S. Tallman; Leif Stenke; Frederick R. Appelbaum
This randomized phase 3 clinical trial evaluated the potential benefit of the addition of gemtuzumab ozogamicin (GO) to standard induction and postconsolidation therapy in patients with acute myeloid leukemia. Patients were randomly assigned to receive daunorubicin (45 mg/m(2) per day on days 1, 2, and 3), cytarabine (100 mg/m(2) per day by continuous infusion on days 1-7), and GO (6 mg/m(2) on day 4; DA+GO) vs standard induction therapy with daunorubicin (60 mg/m(2) per day on days 1, 2, and 3) and cytarabine alone (DA). Patients who achieved complete remission (CR) received 3 courses of high-dose cytarabine. Those remaining in CR after consolidation were randomly assigned to receive either no additional therapy or 3 doses of GO (5 mg/m(2) every 28 days). From August 2004 until August 2009, 637 patients were registered for induction. The CR rate was 69% for DA+GO and 70% for DA (P = .59). Among those who achieved a CR, the 5-year relapse-free survival rate was 43% in the DA+GO group and 42% in the DA group (P = .40). The 5-year overall survival rate was 46% in the DA+GO group and 50% in the DA group (P = .85). One hundred seventy-four patients in CR after consolidation underwent the postconsolidation randomization. Disease-free survival was not improved with postconsolidation GO (HR, 1.48; P = .97). In this study, the addition of GO to induction or postconsolidation therapy failed to show improvement in CR rate, disease-free survival, or overall survival.
Leukemia | 2009
Satu Mustjoki; Marja Ekblom; T. P. Arstila; Ingunn Dybedal; P.K. Epling-Burnette; François Guilhot; Henrik Hjorth-Hansen; Martin Höglund; Panu E. Kovanen; Tuisku Laurinolli; Jane L. Liesveld; Ronald Paquette; Javier Pinilla-Ibarz; Auvo Rauhala; Neil P. Shah; Bengt Simonsson; Marjatta Sinisalo; Juan-Luis Steegmann; Leif Stenke; K Porkka
Dasatinib, a broad-spectrum tyrosine kinase inhibitor (TKI), predominantly targets BCR-ABL and SRC oncoproteins and also inhibits off-target kinases, which may result in unexpected drug responses. We identified 22 patients with marked lymphoproliferation in blood while on dasatinib therapy. Clonality and immunophenotype were analyzed and related clinical information was collected. An abrupt lymphocytosis (peak count range 4–20 × 109/l) with large granular lymphocyte (LGL) morphology was observed after a median of 3 months from the start of therapy and it persisted throughout the therapy. Fifteen patients had a cytotoxic T-cell and seven patients had an NK-cell phenotype. All T-cell expansions were clonal. Adverse effects, such as colitis and pleuritis, were common (18 of 22 patients) and were preceded by LGL lymphocytosis. Accumulation of identical cytotoxic T cells was also detected in pleural effusion and colon biopsy samples. Responses to dasatinib were good and included complete, unexpectedly long-lasting remissions in patients with advanced leukemia. In a phase II clinical study on 46 Philadelphia chromosome-positive acute lymphoblastic leukemia, patients with lymphocytosis had superior survival compared with patients without lymphocytosis. By inhibiting immunoregulatory kinases, dasatinib may induce a reversible state of aberrant immune reactivity associated with good clinical responses and a distinct adverse effect profile.
Blood | 2010
Anna Kreutzman; Vesa Juvonen; Veli Kairisto; Marja Ekblom; Leif Stenke; Ruth Seggewiss; Kimmo Porkka; Satu Mustjoki
In a proportion of patients with chronic myeloid leukemia (CML) being treated with dasatinib, we recently observed large granular lymphocyte (LGL) expansions carrying clonal T-cell receptor (TCR) gamma/delta gene rearrangements. To assess the prevalence and role of clonal lymphocytes in CML, we collected samples from patients (n = 34) at the time of diagnosis and during imatinib and dasatinib therapies and analyzed lymphocyte clonality with a sensitive polymerase chain reaction-based method of TCR gamma and delta genes. Surprisingly, at CML diagnosis, 15 of 18 patients (83%) had a sizeable clonal, BCR-ABL1 negative lymphocyte population, which was uncommon in healthy persons (1 of 12; 8%). The same clone persisted at low levels in most imatinib-treated patients. In contrast, in a distinct population of dasatinib-treated patients, the diagnostic phase clone markedly expanded, resulting in absolute lymphocytosis in blood. Most patients with LGL expansions (90%) had TCR delta rearrangements, which were uncommon in patients without an LGL expansion (10%). The TCR delta clones were confined to gammadelta(+) T- or natural killer-cell compartments and the TCR gamma clones to CD4(+)/CD8(+) alphabeta(+) fractions. The functional importance of clonal lymphocytes as a part of leukemia immune surveillance and the putative anergy-reversing role of dasatinib require further evaluation.
Blood | 2014
Mette Ilander; Ulla Olsson-Strömberg; Hanna Lahteenmaki; Kasanen Tiina; Perttu Koskenvesa; Stina Söderlund; Martin Höglund; Berit Markevärn; Anders Själander; Kourosh Lotfi; Claes Malm; Anna Lübking; Marja Ekblom; Elena Holm; Mats Björeman; Sören Lehmann; Leif Stenke; Lotta Ohm; Waleed Majeed; Markus Pfirrmann; Martin C. Müller; Joelle Guilhot; Hans Ehrencrona; Henrik Hjorth-Hansen; Susanne Saussele; François-Xavier Mahon; Kimmo Porkka; Johan Richter; Satu Mustjoki
Allogeneic hematopoietic stem cell transplantation (HSCT) is widely used to treat hematopoietic cell disorders but is often complicated by graft-versus-host disease (GVHD), which causes severe epithelial damage. Here we have investigated longitudinally the effects of induction chemotherapy, conditioning radiochemotherapy, and allogeneic HSCT on composition, phenotype, and recovery of circulating innate lymphoid cells (ILCs) in 51 acute leukemia patients. We found that reconstitution of ILC1, ILC2, and NCR(-)ILC3 was slow compared with that of neutrophils and monocytes. NCR(+) ILC3 cells, which are not present in the circulation of healthy persons, appeared both after induction chemotherapy and after allogeneic HSCT. Circulating patient ILCs before transplantation, as well as donor ILCs after transplantation, expressed activation (CD69), proliferation (Ki-67), and tissue homing markers for gut (α4β7, CCR6) and skin (CCR10 and CLA). The proportion of ILCs expressing these markers was associated with a decreased susceptibility to therapy-induced mucositis and acute GVHD. Taken together, these data suggest that ILC recovery and treatment-related tissue damage are interrelated and affect the development of GVHD.
Journal of Clinical Oncology | 2000
Ulf Tidefelt; Jan Liliemark; Astrid Gruber; E. Liliemark; B. Sundman-Engberg; Gunnar Juliusson; Leif Stenke; A. Elmhorn-Rosenborg; L. Möllgård; S. Lehman; D. Xu; A. Covelli; B. Gustavsson; Christer Paul
PURPOSE The aim of the present study was to evaluate the effect of the cyclosporine derivative valspodar (PSC 833; Amdray, Novartis Pharma, Basel, Switzerland) on the concentration of daunorubicin (dnr) in leukemic blast cells in vivo during treatment. PATIENTS AND METHODS Ten patients with acute myeloid leukemia (AML) were included. Leukemic cells from seven of the patients were P-glycoprotein (Pgp)-positive. dnr 100 mg/m(2) was given as a continuous infusion over 72 hours. After 24 hours, a loading dose of valspodar was given, followed by a 36-hour infusion of 10 mg/kg per 24 hours. Blood samples were drawn at regular intervals, and concentrations of dnr and its main metabolite, daunorubicinol, in plasma and isolated leukemic cells were determined by high-pressure liquid chromatography. RESULTS The mean dnr concentrations in leukemic cells 24 hours after the start of infusion (before valspodar) were 18.8 micromol/L in Pgp-negative samples and 13.5 micromol/L in Pgp-positive samples. After 8 hours of valspodar infusion, these values were 25.8 and 24.0 micromol/L, respectively. The effect of valspodar was evaluated from the ratio of the area under the curve (AUC) for dnr concentration versus time in leukemic cells to the AUC for dnr concentration against time in the plasma. For the seven patients with Pgp-positive leukemia, the mean ratio increased by 52%, from 545 on day 1 to 830 on day 2 (P<.05) when valspodar was given. In the three patients with Pgp-negative leukemia, no significant difference was observed. CONCLUSION These results strongly suggest that valspodar, by interacting with Pgp, can increase the cellular uptake of dnr in leukemic blasts in vivo.
Blood | 2013
Martin Höglund; Fredrik Sandin; Karin Hellström; Mats Björeman; Magnus Björkholm; Mats Brune; Arta Dreimane; Marja Ekblom; Sören Lehmann; Per Ljungman; Claes Malm; Berit Markevärn; Kristina Myhr-Eriksson; Lotta Ohm; Ulla Olsson-Strömberg; Anders Själander; Hans Wadenvik; Bengt Simonsson; Leif Stenke; Johan Richter
Clinical management guidelines on malignant disorders are generally based on data from clinical trials with selected patient cohorts. In Sweden, more than 95% of all patients diagnosed with chronic myeloid leukemia (CML) are reported to the national CML registry, providing unique possibilities to compile population-based information. This report is based on registry data from 2002 to 2010, when a total of 779 patients (425 men, 354 women; median age, 60 years) were diagnosed with CML (93% chronic, 5% accelerated, and 2% blastic phase) corresponding to an annual incidence of 0.9/100,000. In 2002, approximately half of the patients received a tyrosine kinase inhibitor as initial therapy, a proportion that increased to 94% for younger (<70 years) and 79% for older (>80 years) patients during 2007-2009. With a median follow-up of 61 months, the relative survival at 5 years was close to 1.0 for patients younger than 60 years and 0.9 for those aged 60 to 80 years, but only 0.6 for those older than 80 years. At 12 months, 3% had progressed to accelerated or blastic phase. Sokal, but not European Treatment and Outcome Study, high-risk scores were significantly linked to inferior overall and relative survival. Patients living in university vs nonuniversity catchment areas more often received tyrosine kinase inhibitors up front but showed comparable survival.
Leukemia | 2011
Anna Kreutzman; Kristin Ladell; C. Koechel; Emma Gostick; Marja Ekblom; Leif Stenke; Teresa Melo; Hermann Einsele; K Porkka; David A. Price; Satu Mustjoki; Ruth Seggewiss
The tyrosine kinase inhibitor dasatinib exerts immunosuppressive effects on T-cells and NK-cells in vitro. However, in some dasatinib-treated leukemia patients, clonal lymphocytosis with large granular lymphocyte (LGL) morphology develops, and this is associated with enhanced therapeutic responses. To elucidate the mechanistic basis for this paradoxical observation, we conducted detailed phenotypic and functional analyses of T-cell and NK-cell populations from 25 dasatinib-treated leukemia patients. All tested patients with LGL expansions (15/16) were cytomegalovirus (CMV) immunoglobulin (IgG) seropositive with high frequencies of CMV-specific CD8+ T-cells; 5/16 LGL patients also experienced symptomatic CMV reactivation during dasatinib therapy. Expanded T-cell and NK-cell populations exhibited late differentiated (CD27−CD57+) phenotypes; this was associated with a predisposition to apoptosis within the T-cell compartment and impaired NK-cell cytotoxicity. Only 3/9 non-LGL patients were CMV IgG seropositive. Dasatinib inhibited in vitro lymphocyte functions, similarly in LGL patients and controls. Notably, distinct CD8high and CD8low T-cell subsets were observed in LGL patients; this phenotypic dichotomy was also apparent in CMV-specific CD8+ T-cell populations, and exhibited features consistent with antigen-driven activation. In addition, plasma levels of IP-10, IL-6, monokine induced by interferon-γ and interleukin-2R were significantly increased in LGL patients. These data provide evidence that dasatinib-associated LGL expansion is linked to CMV reactivation and suggest a potential mechanism for this phenomenon.
Lancet Oncology | 2016
J H Lipton; Charles Chuah; Agnès Guerci-Bresler; Gianantonio Rosti; David Simpson; Sarit Assouline; Gabriel Etienne; Franck E. Nicolini; Philipp le Coutre; Richard E. Clark; Leif Stenke; David Andorsky; Vivian G. Oehler; Stephanie Lustgarten; Victor M. Rivera; Timothy P. Clackson; Frank G. Haluska; Michele Baccarani; Jorge Cortes; François Guilhot; Andreas Hochhaus; Timothy P. Hughes; Hagop M. Kantarjian; Neil P. Shah; Moshe Talpaz; Michael W. Deininger
BACKGROUND Ponatinib has shown potent activity against chronic myeloid leukaemia that is resistant to available treatment, although it is associated with arterial occlusion. We investigated whether this activity and safety profile would result in superior outcomes compared with imatinib in previously untreated patients with chronic myeloid leukaemia. METHODS The Evaluation of Ponatinib versus Imatinib in Chronic Myeloid Leukemia (EPIC) study was a randomised, open-label, phase 3 trial designed to assess the efficacy and safety of ponatinib, compared with imatinib, in newly diagnosed patients with chronic-phase chronic myeloid leukaemia. Patients from 106 centres in 21 countries were randomly assigned (1:1, with stratification by Sokal score at diagnosis) using an interactive voice and web response system to receive oral ponatinib (45 mg) or imatinib (400 mg) once daily until progression, unacceptable toxicity, or other criteria for withdrawal were met. Eligible patients were at least 18 years of age, within 6 months of diagnosis, and Philadelphia chromosome-positive by cytogenetic assessment, with Eastern Cooperative Oncology Group performance status of 0-2, and had not previously been treated with tyrosine kinase inhibitors. The primary endpoint was major molecular response at 12 months. Patients who remained on study and had molecular assessments at specified timepoints were studied at those timepoints. Safety analyses included all treated patients, as per study protocol. This trial is registered with ClinicalTrials.gov, number NCT01650805. FINDINGS Between Aug 14, 2012, and Oct 9, 2013, 307 patients were randomly assigned to receive ponatinib (n=155) or imatinib (n=152). The trial was terminated early, on Oct 17, 2013, following concerns about vascular adverse events observed in patients given ponatinib in other trials. Trial termination limited assessment of the primary endpoint of major molecular response at 12 months, as only 13 patients in the imatinib group and ten patients in the ponatinib group could be assessed at this timepoint; the proportion of patients achieving a major molecular response at 12 months did not differ significantly between the two groups (eight [80%] of ten patients given ponatinib and five [38%] of 13 patients given imatinib; p=0·074). 11 (7%) of 154 patients given ponatinib and three (2%) of 152 patients given imatinib had arterial occlusive events (p=0·052); arterial occlusive events were designated serious in ten (6%) of 154 patients given ponatinib and in one (1%) of 152 patients given imatinib (p=0·010). The data monitoring committee criterion for risk assessment (significant difference in serious grade 3 or 4 ischaemic events between groups) was not met (five [3%] of 154 vs one [1%] of 152; p=0·21). Grade 3 or 4 adverse events observed in more than 5% of patients in the ponatinib group were increased lipase (22 [14%] of 154 vs three [2%] of 152 with imatinib), thrombocytopenia (19 [12%] of 154 vs ten [7%] of 152 with imatinib), rash (ten [6%] of 154 vs two [1%] of 152 with imatinib). In the imatinib group, grade 3 or 4 adverse events observed in more than 5% of patients were neutropenia (12 [8%] of 152 vs five [3%] of 154 with ponatinib) and thrombocytopenia (ten [7%] of 152 vs 19 [12%] of 154 with ponatinib). Serious adverse events that occurred in three or more patients given ponatinib were pancreatitis (n=5), atrial fibrillation (n=3), and thrombocytopenia (n=3). No serious adverse event occurred in three or more patients given imatinib. INTERPRETATION The efficacy of ponatinib treatment of newly diagnosed chronic-phase chronic myeloid leukaemia compared with imatinib could not be assessed due to trial termination, but preliminary data suggest there might be benefit, although with more arterial occlusive events than with imatinib at the doses studied. Because the EPIC trial was terminated early, efficacy of ponatinib in this setting remains to be established. FUNDING ARIAD Pharmaceuticals.
Biochemical and Biophysical Research Communications | 1991
Leif Stenke; Mahmoud Mansour; Charlotte Edenius; Peter Reizenstein; Jan Åke Lindgren
Lipoxins A4 and B4 together with the all-trans lipoxin (LX) isomers were produced by normal human bone marrow cell suspensions after incubation with ionophore A23187. Both LXA4 and LXB4 enhanced the growth of myeloid progenitor cells in semisolid agar in the presence of suboptimal concentrations of recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF). Lipoxin A4 at 10(-10) M stimulated the colony formation in 13 out of 15 tested human bone marrows with a mean (+/- SEM) increase of 47 +/- 11% (p = 0.001). A similar stimulatory effect was observed after addition of LXB4 (10(-10) M). The monohydroxyeicosatetraenoic acids 5-, 12- and 15-HETE did not affect colony growth. In addition, LXA4 (10(-8) M) efficiently counteracted the increased colony formation induced by leukotriene C4 (10(-10) M), suggesting an antagonistic relationship between these lipoxygenase products. The results support a role for lipoxins in the regulation of human myelopoiesis.