Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leigh Boardman is active.

Publication


Featured researches published by Leigh Boardman.


Journal of Insect Physiology | 2010

Effects of acclimation temperature on thermal tolerance, locomotion performance and respiratory metabolism in Acheta domesticus L. (Orthoptera: Gryllidae)

M.W. Lachenicht; Susana Clusella-Trullas; Leigh Boardman; C. T. Le Roux; John S. Terblanche

The effects of acclimation temperature on insect thermal performance curves are generally poorly understood but significant for understanding responses to future climate variation and the evolution of these reaction norms. Here, in Acheta domesticus, we examine the physiological effects of 7-9 days acclimation to temperatures 4 degrees C above and below optimum growth temperature of 29 degrees C (i.e. 25, 29, 33 degrees C) for traits of resistance to thermal extremes, temperature-dependence of locomotion performance (jumping distance and running speed) and temperature-dependence of respiratory metabolism. We also examine the effects of acclimation on mitochondrial cytochrome c oxidase (CCO) enzyme activity. Chill coma recovery time (CRRT) was significantly reduced from 38 to 13min with acclimation at 33-25 degrees C, respectively. Heat knockdown resistance was less responsive than CCRT to acclimation, with no significant effects of acclimation detected for heat knockdown times (25 degrees C: 18.25, 29 degrees C: 18.07, 33 degrees C: 25.5min). Thermal optima for running speed were higher (39.4-40.6 degrees C) than those for jumping performance (25.6-30.9 degrees C). Acclimation temperature affected jumping distance but not running speed (general linear model, p=0.0075) although maximum performance (U(MAX)) and optimum temperature (T(OPT)) of the performance curves showed small or insignificant effects of acclimation temperature. However, these effects were sensitive to the method of analysis since analyses of T(OPT), U(MAX) and the temperature breadth (T(BR)) derived from non-linear curve-fitting approaches produced high inter-individual variation within acclimation groups and reduced variation between acclimation groups. Standard metabolic rate (SMR) was positively related to body mass and test temperature. Acclimation temperature significantly influenced the slope of the SMR-temperature reaction norms, whereas no variation in the intercept was found. The CCO enzyme activity remained unaffected by thermal acclimation. Finally, high temperature acclimation resulted in significant increases in mortality (60-70% at 33 degrees C vs. 20-30% at 25 and 29 degrees C). These results suggest that although A. domesticus may be able to cope with low temperature extremes to some degree through phenotypic plasticity, population declines with warmer mean temperatures of only a few degrees are likely owing to the limited plasticity of their performance curves.


Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2016

Does oxygen limit thermal tolerance in arthropods? A critical review of current evidence

W.C.E.P. Verberk; Johannes Overgaard; Rasmus Ern; Mark Bayley; Tobias Wang; Leigh Boardman; John S. Terblanche

Over the last decade, numerous studies have investigated the role of oxygen in setting thermal tolerance in aquatic animals, and there has been particular focus on arthropods. Arthropods comprise one of the most species-rich taxonomic groups on Earth, and display great diversity in the modes of ventilation, circulation, blood oxygen transport, with representatives living both in water (mainly crustaceans) and on land (mainly insects). The oxygen and capacity limitation of thermal tolerance (OCLTT) hypothesis proposes that the temperature dependent performance curve of animals is shaped by the capacity for oxygen delivery in relation to oxygen demand. If correct, oxygen limitation could provide a mechanistic framework to understand and predict both current and future impacts of rapidly changing climate. In arthropods, most studies testing the OCLTT hypothesis have considered tolerance to thermal extremes. These studies likely operate from the philosophical viewpoint that if the model can predict these critical thermal limits, then it is more likely to also explain loss of performance at less extreme, non-lethal temperatures, for which much less data is available. Nevertheless, the extent to which lethal temperatures are influenced by limitations in oxygen supply remains unresolved. Here we critically evaluate the support and universal applicability for oxygen limitation being involved in lethal temperatures in crustaceans and insects. The relatively few studies investigating the OCLTT hypothesis at low temperature do not support a universal role for oxygen in setting the lower thermal limits in arthropods. With respect to upper thermal limits, the evidence supporting OCLTT is stronger for species relying on underwater gas exchange, while the support for OCLTT in air-breathers is weak. Overall, strongest support was found for increased anaerobic metabolism close to thermal maxima. In contrast, there was only mixed support for the prediction that aerobic scope decreases near critical temperatures, a key feature of the OCLTT hypothesis. In air-breathers, only severe hypoxia (< 2 kPa) affected heat tolerance. The discrepancies for heat tolerance between aquatic and terrestrial organisms can to some extent be reconciled by differences in the capacity to increase oxygen transport. As air-breathing arthropods are unlikely to become oxygen limited under normoxia (especially at rest), the oxygen limitation component in OCLTT does not seem to provide sufficient information to explain lethal temperatures. Nevertheless, many animals may simultaneously face hypoxia and thermal extremes and the combination of these potential stressors is particularly relevant for aquatic organisms where hypoxia (and hyperoxia) is more prevalent. In conclusion, whether taxa show oxygen limitation at thermal extremes may be contingent on their capacity to regulate oxygen uptake, which in turn is linked to their respiratory medium (air vs. water). Fruitful directions for future research include testing multiple predictions of OCLTT in the same species. Additionally, we call for greater research efforts towards studying the role of oxygen in thermal limitation of animal performance at less extreme, sub-lethal temperatures, necessitating studies over longer timescales and evaluating whether oxygen becomes limiting for animals to meet energetic demands associated with feeding, digestion and locomotion.


Comprehensive Psychiatry | 2011

Investigating SAPAP3 variants in the etiology of obsessive-compulsive disorder and trichotillomania in the South African white population

Leigh Boardman; Lize van der Merwe; Christine Lochner; Craig J. Kinnear; Soraya Seedat; Dan J. Stein; Johanna C. Moolman-Smook; Sian Hemmings

BACKGROUND Obsessive-compulsive disorder (OCD) is a debilitating psychiatric disorder characterized by repeated obsessions and compulsions. Trichotillomania (TTM), a psychiatric disorder characterized by repetitive hairpulling, is presently classified as an impulse control disorder, but has also been viewed as an obsessive-compulsive spectrum disorder. Both conditions are complex disorders, with evidence from family and twin studies indicating that their etiology includes a genetic component. Results from a recent knockout animal model suggest that SAP90/PSD95-associated protein 3 (SAPAP3) may be involved in the pathophysiology of both disorders. METHODS Seven polymorphic variants distributed across the gene encoding SAPAP3 were genotyped in South African white OCD (n = 172), TTM (n = 45), and control (n = 153) subjects. Single-locus and haplotype analyses were conducted to determine association between genetic variants and subjects with OCD, TTM, and controls. RESULTS Although single-locus analysis revealed a significant association between rs11583978 in SAPAP3 and TTM, this association was nonsignificant after correction for multiple testing. In the OCD group, a significant association was observed between earlier age at onset and the A-T-A-T (rs11583978-rs7541937-rs6662980-rs4652867) haplotype compared with the C-G-G-G haplotype. CONCLUSIONS This study generated preliminary evidence to link SAPAP3 variants to the development of earlier onset OCD. Future studies should concentrate on locating the susceptibility variant(s) by focusing on functional polymorphisms within SAPAP3.


Insect Science | 2012

False codling moth Thaumatotibia leucotreta (Lepidoptera, Tortricidae) larvae are chill-susceptible

Leigh Boardman; Tim G. Grout; John S. Terblanche

Abstract  This study reports on the low temperature tolerance and cold hardiness of larvae of false codling moth, Thaumatotibia leucotreta. We found that larvae have mean critical thermal minima (lower limits of activity) of 6.7°C which was influenced by feeding status. The effects of low temperature exposure and duration of exposure on larval survival were assessed and showed that the temperature at which 50% of the population survives is −11.5 ± 0.3°C after 2 h exposure. The supercooling point (SCP, i.e., freezing temperature) was investigated using a range of cooling rates and under different conditions (feeding and hydration status) and using inoculative freezing treatments (in contact with water or orange juice). The SCP decreased significantly from −15.6°C to −17.4°C after larvae were fasted for 24 h. Twenty‐four hour treatments at either high or low relative humidity (95.9% or 2.4%) also significantly decreased SCP to −17.2°C and −18.2°C respectively. Inoculative freezing (by water contact) raised SCP from −15.6°C to −6.8°C which could have important implications for post‐harvest sterilization. Cooling rates did not affect SCP which suggests that there is limited phenotypic plasticity of SCP during the larval life‐stage, at least over the short time‐scales investigated here. In conclusion, larvae of T. leucotreta are chill‐susceptible and die upon freezing. These results are important in understanding this pests response to temperature variation, understanding pest risk status and improving post‐harvest sterilization efficacy.


Journal of Insect Physiology | 2013

Physiological responses to fluctuating thermal and hydration regimes in the chill susceptible insect, Thaumatotibia leucotreta

Leigh Boardman; Jesper Sørensen; John S. Terblanche

Fluctuating thermal regimes (FTR), consisting of cycles between stressful low and benign temperatures, are known to improve survival and fecundity in a variety of insects. By contrast, fluctuating hydration regimes (FHR) consisting of cycles between dehydrating and benign conditions have been less comprehensively researched. Hypothetically, either repeated stress accumulates damage and reduces survival, or the recovery periods may act as a protective mechanism by allowing low temperature- or dehydration-induced damage to be repaired. Using false codling moth (Thaumatotibia leucotreta) larvae, we investigated whether FTR and FHR resulted in protection, or accumulated damage, at the cellular and whole-organism levels. Time- and age-matched controls were used to verify that the effects were due to the fluctuating stressors and not age- or time-dependent responses. Results showed that larval body water-(BWC) and lipid content (BLC) remained unchanged in response to FTR. Importantly though, FTR are protective when compared to constant low temperature exposures, potentially due to an increase in heat shock protein 70 (HSP70). However, larvae may suffer long-term fitness consequences compared to constant benign exposures. Results for FHR appear equivocal when compared to constant controls, due to high survival rates for all experiments, although the physiological responses to FHR included a decrease in larval BWC and BLC, a decrease in cuticular water loss rates, and a depletion of HSP70 during the final dehydration cycle. In conclusion, it appears that fluctuating stressors are protective in T. leucotreta when compared to constant stress conditions, likely through regulation of whole-animal metabolic rate and HSP70, although other mechanisms (e.g. ion homeostasis) are also implicated.


The Journal of Experimental Biology | 2015

Oxygen safety margins set thermal limits in an insect model system.

Leigh Boardman; John S. Terblanche

ABSTRACT A mismatch between oxygen availability and metabolic demand may constrain thermal tolerance. While considerable support for this idea has been found in marine organisms, results from insects are equivocal and raise the possibility that mode of gas exchange, oxygen safety margins and the physico-chemical properties of the gas medium influence heat tolerance estimates. Here, we examined critical thermal maximum (CTmax) and aerobic scope under altered oxygen supply and in two life stages that varied in metabolic demand in Bombyx mori (Lepidoptera: Bombycidae). We also systematically examined the influence of changes in gas properties on CTmax. Larvae have a lower oxygen safety margin (higher critical oxygen partial pressure at which metabolism is suppressed relative to metabolic demand) and significantly higher CTmax under normoxia than pupae (53°C vs 50°C). Larvae, but not pupae, were oxygen limited with hypoxia (2.5 kPa) decreasing CTmax significantly from 53 to 51°C. Humidifying hypoxic air relieved the oxygen limitation effect on CTmax in larvae, whereas variation in other gas properties did not affect CTmax. Our data suggest that oxygen safety margins set thermal limits in air-breathing invertebrates and the magnitude of this effect potentially reconciles differences in oxygen limitation effects on thermal tolerance found among diverse taxa to date. Highlighted Article: Larval but not pupal Bombyx mori are oxygen limited, with hypoxia significantly decreasing CTmax, suggesting that oxygen safety margins set thermal limits in air-breathing invertebrates.


Proceedings of the Royal Society of London B: Biological Sciences | 2012

Reactive oxygen species production and discontinuous gas exchange in insects

Leigh Boardman; John S. Terblanche; Stefan K. Hetz; Elrike Marais; Steven L. Chown

While biochemical mechanisms are typically used by animals to reduce oxidative damage, insects are suspected to employ a higher organizational level, discontinuous gas exchange mechanism to do so. Using a combination of real-time, flow-through respirometry and live-cell fluorescence microscopy, we show that spiracular control associated with the discontinuous gas exchange cycle (DGC) in Samia cynthia pupae is related to reactive oxygen species (ROS). Hyperoxia fails to increase mean ROS production, although minima are elevated above normoxic levels. Furthermore, a negative relationship between mean and mean ROS production indicates that higher ROS production is generally associated with lower . Our results, therefore, suggest a possible signalling role for ROS in DGC, rather than supporting the idea that DGC acts to reduce oxidative damage by regulating ROS production.


Frontiers in Zoology | 2016

Physiological mechanisms of dehydration tolerance contribute to the invasion potential of Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) relative to its less widely distributed congeners

Christopher W. Weldon; Leigh Boardman; Danica Marlin; John S. Terblanche

BackgroundThe Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) is a highly invasive species now with an almost cosmopolitan distribution. Two other damaging, polyphagous and closely-related species, the marula fruit fly, Ceratitis cosyra (Walker), and the Natal fly, Ceratitis rosa Karsch, are not established outside of sub-Saharan Africa. In this study, adult water balance traits and nutritional body composition were measured in all three species at different temperatures and levels of relative humidity to determine whether tolerance of water stress may partially explain their distribution.ResultsAdult C. capitata exhibited higher desiccation resistance than C. rosa but not C. cosyra. Desiccation resistance of C. capitata was associated with lower rates of water loss under hot and dry conditions, higher dehydration tolerance, and higher lipid reserves that were catabolised during water stress. In comparison with C. capitata, C. cosyra and C. rosa lost water at significantly higher rates under hot, dry conditions, and did not catabolise lipids or other sources of metabolic water during water stress.ConclusionsThese results suggest that adult physiological traits permitting higher tolerance of water stress play a role in the success of C. capitata, particularly relative to C. rosa. The distribution of C. cosyra is likely determined by the interaction of temperature with water stress, as well as the availability of suitable hosts for larval development.


Frontiers in Physiology | 2011

Interactions between Controlled Atmospheres and Low Temperature Tolerance: A Review of Biochemical Mechanisms

Leigh Boardman; Jesper Sørensen; Shelley A. Johnson; John S. Terblanche

Controlled atmosphere treatments using carbon dioxide, oxygen, and/or nitrogen, together with controlled temperature and humidity, form an important method for post-harvest sterilization against insect-infested fruit. However, in insects, the cross tolerance and biochemical interactions between the various stresses of modified gas conditions and low temperature may either elicit or block standard stress responses which can potentiate (or limit) lethal low temperature exposure. Thus, the success of such treatments is sometimes erratic and does not always result in the desired pest mortality. This review focuses on the biochemical modes of action whereby controlled atmospheres affect insects low temperature tolerance, making them more (or occasionally, less) susceptible to cold sterilization. Insights into the integrated biochemical modes of action may be used together with the pests’ low temperature tolerance physiology to determine which treatments may be of value in post-harvest sterilization.


Journal of Insect Physiology | 2015

Physiological and molecular mechanisms associated with cross tolerance between hypoxia and low temperature in Thaumatotibia leucotreta.

Leigh Boardman; Jesper Sørensen; John S. Terblanche

Biochemical adaptations allow insects to withstand exposures to hypoxia and/or hypothermia. Exposure to hypoxia may interact either synergistically or antagonistically with standard low temperature stress responses yet this has not been systematically researched and no clear mechanism has been identified to date. Using larvae of false codling moth Thaumatotibia leucotreta, a pest of southern Africa, we investigated the physiological and molecular responses to hypoxia or temperature stress pre-treatments, followed by a standard low temperature exposure. Survival rates were significantly influenced by pre-treatment conditions, although T. leucotreta shows relatively high basal resistance to various stressors (4% variation in larval survival across all pre-treatments). Results showed that mild pre-treatments with chilling and hypoxia increased resistance to low temperatures and that these responses were correlated with increased membrane fluidity (increased UFA:SFA) and/or alterations in heat shock protein 70 (HSP70); while general mechanical stress (shaking) and heat (2h at 35°C) do not elicit cross tolerance (no change in survival or molecular responses). We therefore found support for some limited cold hardening and cross tolerance responses. Given that combined exposure to hypoxia and low temperature is used to sterilize commodities in post-harvest pest management programs, researchers can now exploit these mechanisms involved in cross tolerance to develop more targeted control methods.

Collaboration


Dive into the Leigh Boardman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Petr Šimek

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge