Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leila Pazouki is active.

Publication


Featured researches published by Leila Pazouki.


Journal of Plant Physiology | 2012

Emissions of green leaf volatiles and terpenoids from Solanum lycopersicum are quantitatively related to the severity of cold and heat shock treatments.

Lucian Copolovici; Astrid Kännaste; Leila Pazouki; Ülo Niinemets

Plant-generated volatiles constitute a sensitive signal of stress response, but quantitative relationships between the stress severity and volatile emissions have been demonstrated only for a few stresses. Among important stresses in the field, chilling and frost stress in spring and heat stress mid-season can significantly curb productivity. We studied the effects of cold and heat shock treatments on leaf photosynthesis and the emission of the volatile products of the lipoxygenase pathway (LOX, also called green leaf volatiles) and mono- and sesquiterpene emissions in tomato (Solanum lycopersicum cv. Mato) to gain quantitative insights into temperature stress-elicited volatile emissions. Both cold and heat stress treatments ranged from mild, which only weakly affected foliage photosynthesis, to severe, which almost completely inhibited photosynthesis. Under non-stressed conditions, LOX emissions were close to the detection limit, and terpene emissions were low. Both cold and heat stress led to enhancement of LOX emissions according to a switch-type response with essentially no emissions under mild stress and major emissions under severe stress. The emissions of mono- and sesquiterpenes increased gradually with the severity of stress, but cold stress resulted in higher sesquiterpene emissions at any given monoterpene emission level. We suggest that the quantitative relationships between the stress strength and emissions observed in this study provide an important means to characterize the severity of cold and heat stresses.


Archive | 2013

The Biochemistry and Molecular Biology of Volatile Messengers in Trees

Hamid Rajabi Memari; Leila Pazouki; Ülo Niinemets

All tree species possess genes encoding terminal enzymes responsible for volatile isoprenoid synthesis. However, only in some species, these genes are expressed constitutively in leaves, while terpenoid emissions can be triggered by abiotic and biotic stress factor in essentially all species. This chapter analyses the biochemical diversity of volatile isoprenoid synthases and investigates the genomic modifications responsible for constitutive volatile production in trees. Plant terpenoids are up to three-domain proteins with either one active center in monofunctional synthases, or two active centers in bifunctional synthases. There is evidence of monophyletic origin of modern plant terpenoid synthases from a three-domain synthase in an ancient progenitor followed by extensive gene duplication and domain loss. The terpenoid synthase sequence similarity can be low among distant plant groups, but terpenoid tertiary structure is remarkably similar in different synthases, and this structural similarity is even conserved across domains of life. However, only minor changes in active center structure can lead to major changes in product profiles, indicating that presence of rich terpenoid genetic diversity constitutes an important means for rapid evolutionary adaptations to novel biotic interactions, and to new abiotic stresses in plant habitats.


Frontiers in Plant Science | 2016

Multi-Substrate Terpene Synthases: Their Occurrence and Physiological Significance

Leila Pazouki; Ülo Niinemets

Terpene synthases are responsible for synthesis of a large number of terpenes in plants using substrates provided by two distinct metabolic pathways, the mevalonate-dependent pathway that is located in cytosol and has been suggested to be responsible for synthesis of sesquiterpenes (C15), and 2-C-methyl-D-erythritol-4-phosphate pathway located in plastids and suggested to be responsible for the synthesis of hemi- (C5), mono- (C10), and diterpenes (C20). Recent advances in characterization of genes and enzymes responsible for substrate and end product biosynthesis as well as efforts in metabolic engineering have demonstrated existence of a number of multi-substrate terpene synthases. This review summarizes the progress in the characterization of such multi-substrate terpene synthases and suggests that the presence of multi-substrate use might have been significantly underestimated. Multi-substrate use could lead to important changes in terpene product profiles upon substrate profile changes under perturbation of metabolism in stressed plants as well as under certain developmental stages. We therefore argue that multi-substrate use can be significant under physiological conditions and can result in complicate modifications in terpene profiles.


Conservation Genetics | 2010

Genetic diversity and relationships among Pistacia species and cultivars

Leila Pazouki; Mohsen Mardi; Parvin Salehi Shanjani; Marianna Hagidimitriou; Seyed Mostafa Pirseyedi; Mohammad Reza Naghavi; Damiano Avanzato; Elisa Vendramin; Salih Kafkas; Behzad Ghareyazie; Mohammad Reza Ghaffari; S. M. Khayam Nekoui

Iran is one of the two major centres of Pistacia diversity and the main producer of pistachios in the world. About 282 Iranian pistachio genotypes (Pistacia spp.), together with 22 foreign cultivars (P. vera), were genotyped using 10 simple sequence repeat (SSR) markers to analyse the genetic diversity and relationships among Pistacia species and cultivars. The results revealed that the genetic diversity within P. atlantica subsp. kurdica was considerably lower than in P. vera or P. khinjuk. Principal coordinate analysis revealed a clear separation between the different Pistacia spices, as well as between the Iranian and foreign cultivars. AMOVA analysis showed that the variation between the species, between different populations, and within populations accounted for 41, 9, and 50% of the total variation, respectively. The results demonstrated that the study of genetic diversity and relationships among Pistacia species and cultivars using SSR markers provides important information for the collection and conservation of pistachio germplasm. In addition, the Iranian cultivars had a broader genetic background than that of the foreign cultivars. Thus, they are very important for genetic conservation and the planning of future breeding programmes. We also determined the different levels of genetic diversity that exist between and within the species and populations and showed that gene flow occurs between the Iranian cultivars and wild-type P. vera populations. The study provides practical information that policy-makers and scientists can apply to the conservation and sustainable use of all the species studied.


Nature Genetics | 2017

Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch

Jarkko Salojärvi; Olli Pekka Smolander; Kaisa Nieminen; Sitaram Rajaraman; Omid Safronov; Pezhman Safdari; Airi Lamminmäki; Juha Immanen; Tianying Lan; Jaakko Tanskanen; Pasi Rastas; Ali Amiryousefi; Balamuralikrishna Jayaprakash; Juhana Kammonen; Risto Hagqvist; Gugan Eswaran; Viivi Ahonen; Juan Antonio Alonso Serra; Fred O. Asiegbu; Juan de Dios Barajas-Lopez; Daniel Blande; Olga Blokhina; Tiina Blomster; Suvi K. Broholm; Mikael Brosché; Fuqiang Cui; Chris Dardick; Sanna Ehonen; Paula Elomaa; Sacha Escamez

Silver birch (Betula pendula) is a pioneer boreal tree that can be induced to flower within 1 year. Its rapid life cycle, small (440-Mb) genome, and advanced germplasm resources make birch an attractive model for forest biotechnology. We assembled and chromosomally anchored the nuclear genome of an inbred B. pendula individual. Gene duplicates from the paleohexaploid event were enriched for transcriptional regulation, whereas tandem duplicates were overrepresented by environmental responses. Population resequencing of 80 individuals showed effective population size crashes at major points of climatic upheaval. Selective sweeps were enriched among polyploid duplicates encoding key developmental and physiological triggering functions, suggesting that local adaptation has tuned the timing of and cross-talk between fundamental plant processes. Variation around the tightly-linked light response genes PHYC and FRS10 correlated with latitude and longitude and temperature, and with precipitation for PHYC. Similar associations characterized the growth-promoting cytokinin response regulator ARR1, and the wood development genes KAK and MED5A.


Tree Genetics & Genomes | 2009

Analysis of the molecular variation between and within cultivated and wild Pistacia species using AFLPs

Parvin Salehi Shanjani; Mohsen Mardi; Leila Pazouki; Marianna Hagidimitriou; Damiano Avanzato; S. Mostafa Pirseyedi; Mohammad Reza Ghaffari; S. Mojtaba Khayam Nekoui

Knowledge of pistachio genetic diversity is necessary for the formulation of appropriate management strategies for the conservation of these species. We analysed amplified fragment length polymorphisms in a total of 216 pistachio accessions, which included seven populations from three wild species (Pistacia vera, Pistacia khinjuk and Pistacia atlantica subsp. kurdica) and most of the important cultivars from Iran, together with some foreign cultivars. High levels of genetic diversity were detected within the Iranian cultivars, and they showed a clear separation from foreign cultivars, as revealed by unweighted pair group method with arithmetic averaging and supported by analysis of molecular variance. The lowest amount of polymorphism was observed in P. atlantica subsp. kurdica, which showed the lowest number of total bands as compared to the other species. This revealed strong genetic erosion of P. atlantica subsp. kurdica, which reflected a severe decline in habitat and over-exploitation. Based on these findings, strategies are proposed for the genetic conservation and management of pistachio species and cultivars.


Environmental and Experimental Botany | 2016

Mono- and sesquiterpene release from tomato (Solanum lycopersicum) leaves upon mild and severe heat stress and through recovery: From gene expression to emission responses

Leila Pazouki; Arooran Kanagendran; Shuai Li; Astrid Kännaste; Hamid Rajabi Memari; Rudolf Bichele; Ülo Niinemets

Plants frequently experience heat ramps of various severities, but how and to what degree plant metabolic activity recovers from mild and severe heat stress is poorly understood. In this study, we exposed the constitutive terpene emitter, Solanum. lycopersicum leaves to mild (37 and 41 °C), moderate (46 °C) and severe (49 °C) heat ramps of 5 min. and monitored foliage photosynthetic activity, lipoxygenase pathway volatile (LOX), and mono- and sesquiterpene emissions and expression of two terpene synthase genes, β-phellandrene synthase and (E)-β-caryophyllene/α-humulene synthase, through a 24 h recovery period upon return to pre-stress conditions. Leaf monoterpene emissions were dominated by β-phellandrene and sesquiterpene emissions by (E)-β-caryophyllene, and thus, these two terpene synthase genes were representative for the two volatile terpene classes. Photosynthetic characteristics partly recovered under moderate heat stress, and very limited recovery was observed under severe stress. All stress treatments resulted in elicitation of LOX emissions that declined during recovery. Enhanced mono- and sesquiterpene emissions were observed immediately after the heat treatment, but the emissions decreased even to below the control treatment during recovery between 2-10 h, and raised again by 24 h. The expression of β-phellandrene and (E)-β-caryophyllene synthase genes decreased between 2-10 h after heat stress, and recovered to pre-stress level in mild heat stress treatment by 24 h. Overall, this study demonstrates a highly sensitive heat response of terpenoid synthesis that is mainly controlled by gene level responses under mild stress, while severe stress leads to non-recoverable declines in foliage physiological and gene expression activities.


Frontiers in Plant Science | 2015

Germacrene A synthase in yarrow (Achillea millefolium) is an enzyme with mixed substrate specificity: gene cloning, functional characterization and expression analysis

Leila Pazouki; Hamid Rajabi Memari; Astrid Kännaste; Rudolf Bichele; Ülo Niinemets

Terpenoid synthases constitute a highly diverse gene family producing a wide range of cyclic and acyclic molecules consisting of isoprene (C5) residues. Often a single terpene synthase produces a spectrum of molecules of given chain length, but some terpene synthases can use multiple substrates, producing products of different chain length. Only a few such enzymes has been characterized, but the capacity for multiple-substrate use can be more widespread than previously thought. Here we focused on germacrene A synthase (GAS) that is a key cytosolic enzyme in the sesquiterpene lactone biosynthesis pathway in the important medicinal plant Achillea millefolium (AmGAS). The full length encoding gene was heterologously expressed in Escherichia coli BL21 (DE3), functionally characterized, and its in vivo expression was analyzed. The recombinant protein catalyzed formation of germacrene A with the C15 substrate farnesyl diphosphate (FDP), while acyclic monoterpenes were formed with the C10 substrate geranyl diphosphate (GDP) and cyclic monoterpenes with the C10 substrate neryl diphosphate (NDP). Although monoterpene synthesis has been assumed to be confined exclusively to plastids, AmGAS can potentially synthesize monoterpenes in cytosol when GDP or NDP become available. AmGAS enzyme had high homology with GAS sequences from other Asteraceae species, suggesting that multi-substrate use can be more widespread among germacrene A synthases than previously thought. Expression studies indicated that AmGAS was expressed in both autotrophic and heterotrophic plant compartments with the highest expression levels in leaves and flowers. To our knowledge, this is the first report on the cloning and characterization of germacrene A synthase coding gene in A. millefolium, and multi-substrate use of GAS enzymes.


Environmental and Experimental Botany | 2018

Differential regulation of volatile emission from Eucalyptus globulus leaves upon single and combined ozone and wounding treatments through recovery and relationships with ozone uptake

Arooran Kanagendran; Leila Pazouki; Ülo Niinemets

Both ozone and wounding constitute two key abiotic stress factors, but their interactive effects on plant constitutive and stress-elicited volatile (VOC) emissions are poorly understood. Furthermore, the information on time-dependent modifications in VOC release during recovery from a combined stress is very limited. We studied the modifications in photosynthetic characteristics and constitutive and stress-induced volatile emissions in response to single and combined applications of acute ozone (4, 5, and 6 ppm) and wounding treatments through recovery (0.5-75 h) in a constitutive isoprene and mono- and sesquiterpene emitter Eucalyptus globulus. Overall, the photosynthetic characteristics were surprisingly resistant to all ozone and wounding treatments. Constitutive isoprene emissions were strongly upregulated by ozone and combined ozone and wounding treatments and remained high through recovery phase, but wounding applied alone reduced isoprene emission. All stress treatments enhanced emissions of lipoxygenase pathway volatiles (LOX), mono- and sesquiterpenes, saturated aldehydes (C7-C10), benzenoids, and geranylgeranyl diphosphate (GGDP) pathway volatiles. Once elicited, GGDP volatile, saturated aldehyde and benzenoid emissions remained high through the recovery period. In contrast, LOX emissions, and total mono- and sesquiterpene emissions decreased through recovery period. However, secondary rises in total sesquiterpene emissions at 75 h and in total monoterpenes at 25-50 h were observed. Overall, acute ozone and wounding treatments synergistically altered gas exchange characteristics and stress volatile emissions. Through the treatments and recovery period, stomatal ozone uptake rate and volatile emission rates were poorly correlated, reflecting possible ozone-scavenging effect of volatiles and thus, reduction of effective ozone dose and elicitation of induced defense by the acute ozone concentrations applied. These results underscore the important role of interactive stresses on both constitutive and induced volatile emission responses.


Journal of Experimental Botany | 2018

Ozone-triggered surface uptake and stress volatile emissions in Nicotiana tabacum ‘Wisconsin’

Arooran Kanagendran; Leila Pazouki; Shuai Li; Bin Liu; Astrid Kännaste; Ülo Niinemets

Ozone-driven isoprenoid emissions scaled with surface ozone uptake, indicating that isoprenoids were released from trichomes. Greater non-stomatal ozone uptake due to ozone detoxification on the leaf surface underlies greater ozone tolerance.

Collaboration


Dive into the Leila Pazouki's collaboration.

Top Co-Authors

Avatar

Ülo Niinemets

Estonian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Astrid Kännaste

Estonian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Arooran Kanagendran

Estonian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Lucian Copolovici

Estonian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marina Suhhorutšenko

Estonian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Shuai Li

Estonian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Marianna Hagidimitriou

Agricultural University of Athens

View shared research outputs
Top Co-Authors

Avatar

Behzad Ghareyazie

International Rice Research Institute

View shared research outputs
Top Co-Authors

Avatar

Bin Liu

Estonian University of Life Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge