Leila Yu. Ustynyuk
Moscow State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Leila Yu. Ustynyuk.
Magnetic Resonance in Chemistry | 2010
Larissa N. Ikryannikova; Leila Yu. Ustynyuk; Alexander N. Tikhonov
An explicit DFT modeling of water surroundings on the electron paramagnetic resonance properties of 4‐amino‐2,2,6,6‐tetramethyl‐piperidine‐N‐oxyl (TA) has been performed. A stepwise hydration of TA is accompanied with certain changes in geometrical parameters (bond lengths and angles) and redistribution of partial electric charges in TA. An aqueous cluster of 45 water molecules can be considered as an appropriate model for a complete aqueous shell around TA, although most of the structural and electronic characteristics of TA already converge at about 10 water molecules. Water surroundings induce an increase in electron spin density on the nitrogen atom of the nitroxide fragment due to stabilization of the polar resonance structure > N+•O− at the expense of less polar structure > NO•. The water‐induced rise of the isotropic splitting constant aiso, calculated from the contact term of the hyperfine interaction, comprises Δaiso(ρN2) = 2.2–2.5 G, which is typical of experimental value for TA. There are two contributions to the solvent effect on the aiso(ρN2) value: the redistribution of spin density in the nitroxide fragment (polarity effect) and water‐induced distortions of TA geometry. Microscopic variations in a hydrogen‐bonded water network cause noticeable fluctuations of the splitting constant aiso(ρN2). Calculations of the atomic spin density (σN2) allowed us to compute the splitting constant from the relationship aiso(σN2) = QσN2, where Q = 36.2 G. A practical advantage of using this relationship is that it gives ‘smoothed’ values of the splitting constant, which are sensitive to the environment polarity but remain tolerant to microscopic fluctuations of the hydrogen‐bonded water network around a spin‐label molecule. Copyright
Archive | 2001
Ilya E. Nifant’ev; Leila Yu. Ustynyuk; Dmitri N. Laikov
The effect of anion A on the energy profile of the interaction Cp2ZrEt+A + C2H4 → Cp2ZrBu+A (A = CH3B(C6F5)3, B(C6F5)4) was studied. The addition of olefin to the ion pair Cp2ZrEt+A is characterized by an appreciable energy barrier and even can be the rate-determining stage of the overall process. The “front-perpendicular” approach of ethylene molecule to nonagostic isomer of Cp2ZrEt+A (5c) was found to be energetically most favorable. The results suggest that “nonagostic” reaction channels characterized by stabilization of intermediates and transition states should be growing in importance with enhancement of the nucleophilicity of the counterion.
Organometallics | 2001
Ilya E. Nifant'ev; Leila Yu. Ustynyuk; Dmitri N. Laikov
Topics in Catalysis | 2005
D. V. Besedin; Leila Yu. Ustynyuk; Yuri A. Ustynyuk; Valerij V. Lunin
Organometallics | 2003
Ilya E. Nifant'ev; Leila Yu. Ustynyuk; D. V. Besedin
Journal of Physical Chemistry A | 2004
Larissa N. Ikryannikova; Leila Yu. Ustynyuk; Alexander N. Tikhonov
Journal of Organometallic Chemistry | 2012
Leila Yu. Ustynyuk; E. A. Fushman; Svetlana S. Lalayan; Ilya E. Nifant'ev
Mendeleev Communications | 2002
D. V. Besedin; Leila Yu. Ustynyuk; Yuri A. Ustynyuk; V. V. Lunin
Journal of Organometallic Chemistry | 2015
Leila Yu. Ustynyuk; B. M. Bulychev
Mendeleev Communications | 2016
Leila Yu. Ustynyuk; B. M. Bulychev