Leilani Zeumer
University of Florida
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Leilani Zeumer.
Journal of Immunology | 2016
Yiming Yin; Seung Chul Choi; Zhiwei Xu; Leilani Zeumer; Nathalie Kanda; Byron P. Croker; Laurence Morel
We have previously shown that CD4+ T cells from B6.Sle1Sle2.Sle3 lupus mice and patients present a high cellular metabolism, and a treatment combining 2-deoxy-d-glucose, which inhibits glucose metabolism, and metformin, which inhibits oxygen consumption, normalized lupus T cell functions in vitro and reverted disease in mice. We obtained similar results with B6.lpr mice, another model of lupus, and showed that a continuous treatment is required to maintain the beneficial effect of metabolic inhibitors. Further, we investigated the relative roles of glucose oxidation and pyruvate reduction into lactate in this process. Treatments of B6.Sle1Sle2.Sle3 mice with either 2-deoxy-d-glucose or metformin were sufficient to prevent autoimmune activation, whereas their combination was necessary to reverse the process. Treatment of B6.Sle1Sle2.Sle3 mice with dichloroacetate, an inhibitor of lactate production, failed to effectively prevent or reverse autoimmune pathology. In vitro, CD4+ T cell activation upregulated the expression of genes that favor oxidative phosphorylation. Blocking glucose oxidation inhibited both IFN-γ and IL-17 production, which could not be achieved by blocking pyruvate reduction. Overall, our data show that targeting glucose oxidation is required to prevent or reverse lupus development in mice, which cannot be achieved by simply targeting the pyruvate-lactate conversion.
Genes and Immunity | 2010
Carla M. Cuda; Leilani Zeumer; Eric S. Sobel; Byron P. Croker; Laurence Morel
The NZM2410-derived Sle1a lupus susceptibility locus induces activated autoreactive CD4+ T cells and reduces the number and function of Foxp3+ regulatory T cells (Tregs). In this study, we first showed that Sle1a contributes to autoimmunity by increasing antinuclear antibody production when expressed on either NZB or NZW heterozygous genomes, and by enhancing the chronic graft versus host disease response indicating an expansion of the autoreactive B-cell pool. Screening two non-overlapping recombinants, the Sle1a.1 and Sle1a.2 intervals that cover the entire Sle1a locus, revealed that both Sle1a.1 and Sle1a.2 were necessary for the full Sle1a phenotype. Sle1a.1, and to a lesser extent Sle1a.2, significantly affected CD4+ T-cell activation as well as Treg differentiation and function. Sle1a.2 also increased the production of autoreactive B cells. As the Sle1a.1 and Sle1a.2 intervals contain only 1 and 15 known genes, respectively, this study considerably reduces the number of candidate genes responsible for the production of autoreactive T cells. These results also show that the Sle1 locus is an excellent model for the genetic architecture of lupus, in which a major obligate phenotype results from the coexpression of multiple genetic variants with individual weak effects.
Journal of Immunology | 2012
Hari-Hara S. K. Potula; Zhiwei Xu; Leilani Zeumer; Allison Sang; Byron P. Croker; Laurence Morel
The lupus-prone NZM2410 mice present an expanded B1a cell population that we have mapped to the Sle2c1 lupus susceptibility locus. The expression of Cdkn2c, a gene encoding for cyclin-dependent kinase inhibitor p18Ink4c and located within Sle2c1, is significantly lower in B6.Sle2c1 B cells than in B6 B cells. To test the hypothesis that the B1a cell expansion in B6.Sle2c1 mice was due to a defective p18 expression, we analyzed the B1a cell phenotypes of p18-deficient C57BL/6 mice. We found a dose-dependent negative correlation between the number of B1a cells and p18 expression in B cells, with p18-deficient mice showing an early expansion of the peritoneal B1a cell pool. p18 deficiency enhanced the homeostatic expansion of B1a cells but not of splenic conventional B cells, and the elevated number of B6.Sle2c1 B1a cells was normalized by cyclin D2 deficiency. These data demonstrated that p18 is a key regulator of the size of the B1a cell pool. B6.p18−/− mice produced significant amounts of anti-DNA IgM and IgG, indicating that p18 deficiency contributes to humoral autoimmunity. Finally, we have shown that Sle2c1 increases lpr-associated lymphadenopathy and T cell–mediated pathology. B6.p18−/−.lpr mice showed a greater lymphadenopathy than B6.Sle2c1.lpr mice, but their renal pathology was intermediate between that of B6.lpr and B6.Sle2c1.lpr mice. This indicated that p18-deficiency synergizes, at least partially, with lpr-mediated pathology. These results show that Cdkn2c contributes to lupus susceptibility by regulating the size of the B1a cell compartment and hence their contribution to autoimmunity.
Methods of Molecular Biology | 2014
Yuan Xu; Leilani Zeumer; Westley H. Reeves; Laurence Morel
Induced mouse models of systemic lupus erythematosus (SLE) have been developed to complement the spontaneous models. This chapter describes the methods used in the pristane-induced model and the chronic graft-versus-host disease (cGVHD) model, both of which have been extensively used. We will also outline the specific mechanisms of systemic autoimmunity that can be best characterized using each of these models.
Genes and Immunity | 2011
Leilani Zeumer; Allison Sang; Haitao Niu; Laurence Morel
The NZM2410-derived Sle2 lupus susceptibility locus induces an abnormal B-cell differentiation, which most prominently leads to the expansion of autoreactive B1a cells. We have mapped the expansion of B1a cells to three Sle2 sub-loci, Sle2a, Sle2b and Sle2c. Sle2 also enhances the breach of B-cell tolerance to nuclear antigens in the 56R anti-DNA immunoglobulin transgenic (Tg) model. This study used the Sle2 sub-congenic strains to map the activation of 56R Tg B cells. Sle2c strongly sustained the breach of tolerance and the activation of anti-DNA B cells. The production of Tg-encoded anti-DNA antibodies was more modest in Sle2a-expressing mice, but Sle2a was responsible for the recruitment for Tg B cells to the marginal zone, a phenotype that has been found for 56R Tg B cells in mice expressing the whole Sle2 interval. In addition, Sle2a promoted the production of endogenously encoded anti-DNA antibodies. Overall, this study showed that at least two Sle2 genes are involved in the activation of anti-DNA B cells, and excluded more than two-thirds of the Sle2 interval from contributing to this phenotype. This constitutes an important step toward the identification of novel genes that have a critical role in B-cell tolerance.
PLOS ONE | 2016
Ahmed S. Elshikha; Yuanqing Lu; Mong Jen Chen; Mohammad Ahsanul Akbar; Leilani Zeumer; Andrea Ritter; Hanaa Elghamry; Mahmoud A. Mahdi; Laurence Morel; Sihong Song
Systemic lupus erythematosus (SLE) is an autoimmune disorder with a worldwide distribution and considerable mortality and morbidity. Although the pathogenesis of this disease remains elusive, over-reactive dendritic cells (DCs) play a critical role in the disease development. It has been shown that human alpha-1 antitrypsin (hAAT) has protective effects in type 1 diabetes and rheumatoid arthritis mouse models. In the present study, we tested the effect of AAT on DC differentiation and functions, as well as its protective effect in a lupus-prone mouse model. We showed that hAAT treatment significantly inhibited LPS (TLR4 agonist) and CpG (TLR9 agonist) -induced bone-marrow (BM)-derived conventional and plasmacytoid DC (cDC and pDC) activation and reduced the production of inflammatory cytokines including IFN-I, TNF-α and IL-1β. In MRL/lpr mice, hAAT treatment significantly reduced BM-derived DC differentiation, serum autoantibody levels, and importantly attenuated renal pathology. Our results for the first time demonstrate that hAAT inhibits DC activation and function, and it also attenuates autoimmunity and renal damage in the MRL/lpr lupus model. These results imply that hAAT has a therapeutic potential for the treatment of SLE in humans.
Arthritis Research & Therapy | 2013
Margareta Lantow; Ramya Sivakumar; Leilani Zeumer; Clive Wasserfall; Ying-Yi Zheng; Mark A. Atkinson; Laurence Morel
IntroductionAn NZB-derived genetic locus (Sle2c2) that suppresses autoantibody production in a mouse model of induced systemic lupus erythematosus contains a polymorphism in the gene encoding the G-CSF receptor. This study was designed to test the hypothesis that the Sle2c2 suppression is associated with an impaired G-CSF receptor function that can be overcome by exogenous G-CSF.MethodsLeukocytes from B6.Sle2c2 and B6 congenic mice, which carry a different allele of the G-CSF receptor, were compared for their responses to G-CSF. Autoantibody production was induced with the chronic graft-versus-host-disease (cGVHD) model by adoptive transfer of B6.bm12 splenocytes. Different treatment regimens varying the amount and frequency of G-CSF (Neulasta®) or carrier control were tested on cGVHD outcomes. Autoantibody production, immune cell activation, and reactive oxygen species (ROS) production were compared between the two strains with the various treatments. In addition, the effect of G-CSF treatment was examined on the production autoantibodies in the B6.Sle1.Sle2.Sle3 (B6.TC) spontaneous model of lupus.ResultsB6.Sle2c2 and B6 leukocytes responded differently to G-CSF. G-CSF binding by B6.Sle2c2 leukocytes was reduced as compared to B6, which was associated with a reduced expansion in response to in vivo G-CSF treatment. G-CSF in vivo treatment also failed to mobilize bone-marrow B6.Sle2c2 neutrophils as it did for B6 neutrophils. In contrast, the expression of G-CSF responsive genes indicated a higher G-CSF receptor signaling in B6.Sle2c2 cells. G-CSF treatment restored the ability of B6.Sle2c2 mice to produce autoantibodies in a dose-dependent manner upon cGVHD induction, which correlated with restored CD4+ T cells activation, as well as dendritic cell and granulocyte expansion. Steady-state ROS production was higher in B6.Sle2c2 than in B6 mice. cGVHD induction resulted in a larger increase in ROS production in B6 than in B6.Sle2c2 mice, and this difference was eliminated with G-CSF treatment. Finally, a low dose G-CSF treatment accelerated the production of anti-dsDNA IgG in young B6.TC mice.ConclusionThe different in vivo and in vitro responses of B6.Sle2c2 leukocytes are consistent with the mutation in the G-CSFR having functional consequences. The elimination of Sle2c2 suppression of autoantibody production by exogenous G-CSF indicates that Sle2c2 corresponds to a loss of function of G-CSF receptor. This result was corroborated by the increased anti-dsDNA IgG production in G-CSF-treated B6.TC mice, which also carry the Sle2c2 locus. Overall, these results suggest that the G-CSF pathway regulates the production of autoantibodies in murine models of lupus.
The FASEB Journal | 2015
Betsabeh Khoramian Tusi; Changwang Deng; Tal Salz; Leilani Zeumer; Yangqiu Li; Chi Wai Eric So; Laurence Morel; Yi Qiu; Suming Huang
SETD1A is a member of trithorax‐related histone methyltransferases that methylate lysine 4 at histone H3 (H3K4). We showed previously that Setd1a is required for mesoderm specification and hematopoietic lineage differentiation in vitro. However, it remains unknown whether or not Setd1a controls specific hematopoietic lineage commitment and differentiation during animal development. Here, we reported that homozygous Setd1a knockout (KO) mice are embryonic lethal. Loss of the Setd1a gene in the hematopoietic compartment resulted in a blockage of the progenitor B‐cell‐to‐precursor B‐cell development in bone marrow (BM) and B‐cell maturation in spleen. The Setd1a‐cKO (conditional knockout) mice exhibited an enlarged spleen with disrupted spleen architecture and leukocytopenia. Mechanistically, Setd1a deficiency in BM reduced the levels of H3K4me3 at critical B‐cell gene loci, including Pax5 and Rag1/2, which are critical for the IgH (Ig heavy‐chain) locus contractions and rearrangement. Subsequently, the differential long‐range looped interactions of the enhancer Eμ with proximal 5′ DH region and 3′ regulatory regions as well as with Pax5‐activated intergenic repeat elements and 5′ distal VH genes were compromised by the Setd1a‐cKO. Together, our findings revealed a critical role of Setd1a and its mediated epigenetic modifications in regulating the IgH rearrangement and B‐cell development.—Tusi, B. K., Deng, C., Salz, T., Zeumer, L., Li, Y., So, C. W. E., Morel, L. M., Qiu, Y., Huang, S. Setd1a regulates progenitor B‐cell‐to‐precursor B‐cell development through histone H3 lysine 4 trimethylation and Ig heavy‐chain rearrangement. FASEB J. 29, 1505‐1515 (2015). www.fasebj.org
Frontiers in Immunology | 2016
Nichol E. Holodick; Leilani Zeumer; Thomas L. Rothstein; Laurence Morel
B6.Sle1.Sle2.Sle3 (B6.TC) lupus-prone mice carrying the NZB allele of Cdkn2c, encoding for the cyclin-dependent kinase inhibitor P18INK4, accumulate B-1a cells due to a higher rate of proliferative self-renewal. However, it is unclear whether this affects primarily early-appearing B-1a cells of fetal origin or later-appearing B-1a cells that emerge from bone marrow. B-1a cells are the major source of natural autoantibodies, and it has been shown that their protective nature is associated with a germline-like sequence, which is characterized by few N-nucleotide insertions and a repertoire skewed toward rearrangements predominated during fetal life, VH11 and VH12. To determine the nature of B-1a cells expanded in B6.TC mice, we amplified immunoglobulin genes by PCR from single cells in mice. Sequencing showed a significantly higher proportion of B-1a cell antibodies that display fewer N-additions in B6.TC mice than in B6 control mice. Following this lower number of N-insertions within the CDR-H3 region, the B6.TC B-1a cells display shorter CDR-H3 length than B6 B-1a cells. The absence of N-additions is a surrogate for fetal origin, as TdT expression starts after birth in mice. Therefore, our results suggest that the B-1a cell population is not only expanded in autoimmune B6.TC mice but also qualitatively different with the majority of cells from fetal origin. Accordingly, our sequencing results also demonstrated the overuse of VH11 and VH12 in autoimmune B6.TC mice as compared to B6 controls. These results suggest that the development of lupus autoantibodies in these mice is coupled with skewing of the B-1a cell repertoire and possible retention of protective natural antibodies.
Journal of Immunology | 2015
Shun Lu; Leilani Zeumer; Heather Sorensen; Hong Yang; Yunfai Ng; Fahong Yu; Alberto Riva; Byron P. Croker; Shannon M. Wallet; Laurence Morel
Pre–B cell leukemia homeobox 1 (Pbx1)-d is a dominant-negative splice isoform of the gene Pbx1 that corresponds to the NZM2410 lupus susceptibility locus Sle1a1. Pbx1 is required to maintain stem cell self-renewal, including that of mesenchymal stem cells (MSCs). MSCs have immunosuppressive functions that require stem cell maintenance. We tested the hypothesis that the expression of Pbx1-d favors MSC differentiation and impairs their immunosuppressive functions. We demonstrate that Sle1a1 MSCs express high levels of Pbx1-d as compared with congenic C57BL/6J (B6) MSCs. Sle1a1 MSCs grew faster and differentiated significantly more rapidly into osteoblasts than did B6 MSCs. This corresponded to a significant decrease in the expression of genes associated with stemness and an increase in the expression of genes associated with differentiation. Additionally, Sle1a1 MSCs express a gene expression profile associated with an enhanced innate immunity and inflammation. Suppression of Ig production from TLR-activated B6 B cells and IL-2 secretion from activated B6 CD4+ T cells was significantly impaired in Sle1a1 MSCs as compared with B6 MSCs. B6.Sle1a1 MSCs showed intermediate activity in suppressing lupus immunophenotypes in three different mouse models. Taken together, these data suggest that the expression of the lupus susceptibility allele Pbx1-d isoform impairs MSC functions, which may contribute to lupus pathogenesis both through a defective immunosuppression and the promotion of a proinflammatory environment.