Leilei Gu
Hong Kong University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Leilei Gu.
Nature Communications | 2014
Xi Liu; Leilei Gu; Qianpeng Zhang; Jiyuan Wu; Yun-Ze Long; Zhiyong Fan
High-performance photodetectors are critical for high-speed optical communication and environmental sensing, and flexible photodetectors can be used for a wide range of portable or wearable applications. Here we demonstrate the all-printable fabrication of polycrystalline nanowire-based high-performance photodetectors on flexible substrates. Systematic investigations have shown their ultra-high photoconductive gain, responsivity and detectivity up to 3.3 × 1017 Jones. Further analysis shows that their high performance originates from the unique band-edge modulation along the nanowire axial direction, where the existence of Schottky barriers in series leads to highly suppressed dark current of the device and also gives rise to fast photoelectric response to low-intensity optical signal owing to barrier height modulation. The discovered rationale in this work can be utilized as guideline to design high-performance photodetectors with other nanomaterial systems. The developed fabrication scheme opens up possibility for future flexible and high-performance integrated optoelectronic sensor circuitry.
Nano Letters | 2012
Siu-Fung Leung; Miao Yu; Qingfeng Lin; Kyungmook Kwon; Kwong Lung Ching; Leilei Gu; Kyoungsik Yu; Zhiyong Fan
Unique light-matter interaction at nanophotonic regime can be harnessed for designing efficient photonic and optoelectronic devices such as solar cells, lasers, and photodetectors. In this work, periodic photon nanowells are fabricated with a low-cost and scalable approach, followed by systematic investigations of their photon capturing properties combining experiments and simulations. Intriguingly, it is found that a proper periodicity greatly facilitates photon capturing process in the nanowells, primarily owing to optical diffraction. Meanwhile, the nanoengineered morphology renders the nanostructures with a broad-band efficient light absorption. The findings in this work can be utilized to implement a new type of nanostructure-based solar cells. Also, the methodology applied in this work can be generalized to rational design of other types of efficient photon-harvesting devices.
Scientific Reports | 2015
Mohammad Mahdi Tavakoli; Leilei Gu; Claas J. Reckmeier; Jin He; Andrey L. Rogach; Yan Yao; Zhiyong Fan
Organometallic trihalide perovskites are promising materials for photovoltaic applications, which have demonstrated a rapid rise in photovoltaic performance in a short period of time. We report a facile one-step method to fabricate planar heterojunction perovskite solar cells by chemical vapor deposition (CVD), with a solar power conversion efficiency of up to 11.1%. We performed a systematic optimization of CVD parameters such as temperature and growth time to obtain high quality films of CH3NH3PbI3 and CH3NH3PbI3-xClx perovskite. Scanning electron microscopy and time resolved photoluminescence data showed that the perovskite films have a large grain size of more than 1 micrometer, and carrier life-times of 10 ns and 120 ns for CH3NH3PbI3 and CH3NH3PbI3-xClx, respectively. This is the first demonstration of a highly efficient perovskite solar cell using one step CVD and there is likely room for significant improvement of device efficiency.
Scientific Reports | 2015
Siu-Fung Leung; Leilei Gu; Qianpeng Zhang; Kwong Hoi Tsui; Jia-Min Shieh; Chang-Hong Shen; Tzu-Hsuan Hsiao; Chin-Hung Hsu; Linfeng Lu; Dongdong Li; Qingfeng Lin; Zhiyong Fan
Three-dimensional (3-D) nanostructures have demonstrated enticing potency to boost performance of photovoltaic devices primarily owning to the improved photon capturing capability. Nevertheless, cost-effective and scalable fabrication of regular 3-D nanostructures with decent robustness and flexibility still remains as a challenging task. Meanwhile, establishing rational design guidelines for 3-D nanostructured solar cells with the balanced electrical and optical performance are of paramount importance and in urgent need. Herein, regular arrays of 3-D nanospikes (NSPs) were fabricated on flexible aluminum foil with a roll-to-roll compatible process. The NSPs have precisely controlled geometry and periodicity which allow systematic investigation on geometry dependent optical and electrical performance of the devices with experiments and modeling. Intriguingly, it has been discovered that the efficiency of an amorphous-Si (a-Si) photovoltaic device fabricated on NSPs can be improved by 43%, as compared to its planar counterpart, in an optimal case. Furthermore, large scale flexible NSP solar cell devices have been fabricated and demonstrated. These results not only have shed light on the design rules of high performance nanostructured solar cells, but also demonstrated a highly practical process to fabricate efficient solar panels with 3-D nanostructures, thus may have immediate impact on thin film photovoltaic industry.
Advanced Materials | 2016
Leilei Gu; Mohammad Mahdi Tavakoli; Daquan Zhang; Qianpeng Zhang; Aashir Waleed; Yiqun Xiao; Kwong Hoi Tsui; Yuanjing Lin; Lei Liao; Jiannong Wang; Zhiyong Fan
Large-scale and highly ordered 3D perov-skite nanowire (NW) arrays are achieved in nanoengineering templates by a unique vapor-solid-solid reaction process. The excellent material properties, in conjunction with the high integration density of the NW arrays, make them promising for 3D integrated nanoelectronics/optoelectronics. Image sensors with 1024 pixels are assembled and characterized to demonstrate the technological potency.
Nano Letters | 2017
Aashir Waleed; Mohammad Mahdi Tavakoli; Leilei Gu; Zi-Yi Wang; Daquan Zhang; Arumugam Manikandan; Qianpeng Zhang; Rong-Jun Zhang; Yu-Lun Chueh; Zhiyong Fan
Organometal halide perovskite materials have triggered enormous attention for a wide range of high-performance optoelectronic devices. However, their stability and toxicity are major bottleneck challenges for practical applications. Substituting toxic heavy metal, that is, lead (Pb), with other environmentally benign elements, for example, tin (Sn), could be a potential solution to address the toxicity issue. Nevertheless, even worse stability of Sn-based perovskite material than Pb-based perovskite poses a great challenge for further device fabrication. In this work, for the first time, three-dimensional CH3NH3SnI3 perovskite nanowire arrays were fabricated in nanoengineering templates, which can address nanowire integration and stability issues at the same time. Also, nanowire photodetectors have been fabricated and characterized. Intriguingly, it was discovered that as the nanowires are embedded in mechanically and chemically robust templates, the material decay process has been dramatically slowed down by up to 840 times, as compared with a planar thin film. This significant improvement on stability can be attributed to the effective blockage of diffusion of water and oxygen molecules within the templates. These results clearly demonstrate a new and alternative strategy to address the stability issue of perovskite materials, which is the major roadblock for high-performance optoelectronics.
ACS Nano | 2017
Ludong Li; Leilei Gu; Zheng Lou; Zhiyong Fan; Guozhen Shen
Here we report the fabrication of high-performance ultraviolet photodetectors based on a heterojunction device structure in which ZnO quantum dots were used to decorate Zn2SnO4 nanowires. Systematic investigations have shown their ultrahigh light-to-dark current ratio (up to 6.8 × 104), specific detectivity (up to 9.0 × 1017 Jones), photoconductive gain (up to 1.1 × 107), fast response, and excellent stability. Compared with a pristine Zn2SnO4 nanowire, a quantum dot decorated nanowire demonstrated about 10 times higher photocurrent and responsivity. Device physics modeling showed that their high performance originates from the rational energy band engineering, which allows efficient separation of electron-hole pairs at the interfaces between ZnO quantum dots and a Zn2SnO4 nanowire. As a result of band engineering, holes migrate to ZnO quantum dots, which increases electron concentration and lifetime in the nanowire conduction channel, leading to significantly improved photoresponse. The enhancement mechanism found in this work can also be used to guide the design of high-performance photodetectors based on other nanomaterials. Furthermore, flexible ultraviolet photodetectors were fabricated and integrated into a 10 × 10 device array, which constitutes a high-performance flexible ultraviolet image sensor. These intriguing results suggest that the band alignment engineering on nanowires can be rationally achieved using compound semiconductor quantum dots. This can lead to largely improved device performance. Particularly for ZnO quantum dot decorated Zn2SnO4 nanowires, these decorated nanowires may find broad applications in future flexible and wearable electronics.
Nano Letters | 2017
Aashir Waleed; Mohammad Mahdi Tavakoli; Leilei Gu; Shabeeb Hussain; Daquan Zhang; Swapnadeep Poddar; Zi-Yi Wang; Rong-Jun Zhang; Zhiyong Fan
Alluring optical and electronic properties have made organometallic halide perovskites attractive candidates for optoelectronics. Among all perovskite materials, inorganic CsPbX3 (X is halide) in black cubic phase has triggered enormous attention recently owing to its comparable photovoltaic performance and high stability as compared to organic and hybrid perovskites. However, cubic phase stabilization at room temperature for CsPbI3 still survives as a challenge. Herein we report all inorganic three-dimensional vertical CsPbI3 perovskite nanowires (NWs) synthesized inside anodic alumina membrane (AAM) by chemical vapor deposition (CVD) method. It was discovered that the as-grown NWs have stable cubic phase at room temperature. This significant improvement on phase stability can be attributed to the effective encapsulation of NWs by AAM and large specific area of these NWs. To demonstrate device application of these NWs, photodetectors based on these high density CsPbI3 NWs were fabricated demonstrating decent performance. Our discovery suggests a novel and practical approach to stabilize the cubic phase of CsPbI3 material, which will have broad applications for optoelectronics in the visible wavelength range.
Nanoscale | 2013
Leilei Gu; Xi Liu; Kyungmook Kwon; Chih-Chung La; Min Hyung Lee; Kyoungsik Yu; Yu-Lun Chueh; Zhiyong Fan
Highly aligned intrinsic and indium doped CdS nanopillar arrays were fabricated via a template assisted Solid Source Chemical Vapor Deposition method (SSCVD). The prepared nanopillar arrays were well aligned, dense and uniform in diameter and length. Their geometry can be well defined by the design of the templates. These unique properties make them promising candidates for future photonic and optoelectronic devices. The structure of the prepared nanopillars has been studied by high resolution transmission electron microscopy and their different growth orientation as compared to those grown in free space has been observed and interpreted by the template induced change of the liquid-solid interfacial energy and the surface tension at the edge of the circular interface. To investigate electrical property of CdS nanopillars, vertical nanopillar array devices and horizontal individual nanopillar field-effect transistors have been fabricated and characterized. The measurements showed that the location of the indium doping source significantly affected carrier concentration, conductivity and field-effect mobility of the prepared CdS nanopillars. Particularly, it was found that conductivity could be improved by 4 orders of magnitude and field-effect mobility could be enhanced up to 50 cm(2) V(-1) s(-1) via proper doping control. These results enable further applications of CdS nanopillars in nano-optoelectronic applications such as photodetection and photovoltaics in the future.
Light-Science & Applications | 2017
Leilei Gu; Zhiyong Fan
Broadband photodetectors with unprecedented responsivity were reported. It widens the application of organometal halide perovskites in highly sensitive, low-cost and flexible photodetectors. The fundamental device physics revealed will have significant impact on the design of future ultrasensitive photodetectors and other optoelectronic devices.