Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leilei Li is active.

Publication


Featured researches published by Leilei Li.


Journal of Biological Chemistry | 2012

The oncoprotein HBXIP uses two pathways to up-regulate S100A4 in promotion of growth and migration of breast cancer cells.

Shuangping Liu; Leilei Li; Yingyi Zhang; Yiwen Zhang; Yu Zhao; Xiaona You; Zhenhua Lin; Xiaodong Zhang; Lihong Ye

Background: HBXIP is a novel oncoprotein. Results: HBXIP was able to up-regulate S100A4 though activating STAT4 and inducing DNA methylation of PTEN. Conclusion: HBXIP up-regulates S100A4 via two pathways to promote growth and migration of breast cancer cells. Significance: Our finding provides new insight into the mechanism of HBXIP in promotion of growth and migration of breast cancer. We have reported that hepatitis B X-interacting protein (HBXIP) promotes the proliferation and migration of breast cancer cells. However, the underlying mechanism is poorly understood. In this study, we report that HBXIP works in the event through up-regulating S100A4. We observed that HBXIP expression was positively correlated to that of S100A4 in 87 clinical breast cancer tissue samples. Then, we identified that HBXIP was able to up-regulate S100A4 expression in breast cancer cells. Notably, we observed the HBXIP nuclear localization, implying that HBXIP may be associated with the promoter of S100A4. Chromatin immunoprecipitation assay (ChIP) and electrophoretic mobility shift assay (EMSA) showed that HBXIP was able to bind to the nucleotides +200∼+239 region of S100A4 promoter, containing two putative recognition motif of transcription factor STAT4 and GRβ. It suggests that HBXIP is able to activate S100A4 promoter via interacting with STAT4 in breast cancer cells, leading to the up-regulation of S100A4. In addition, we identified another pathway of S100A4 up-regulation mediated by HBXIP. We found that HBXIP activated the PTEN/PI3K/AKT signaling by inducing DNA methylation of PTEN, which subsequently boosted S100A4 expression. In function, we demonstrated that HBXIP enhanced the growth or migration of breast cancer cells through S100A4 in vivo and in vitro. Collectively, we conclude that HBXIP up-regulates S100A4 through activating S100A4 promoter involving STAT4 and inducing PTEN/PI3K/AKT signaling to promote growth and migration of breast cancer cells. Our finding provides new insight into the mechanism of HBXIP in promotion of the development of breast cancer.


Cancer Research | 2016

HBXIP and LSD1 Scaffolded by lncRNA Hotair Mediate Transcriptional Activation by c-Myc

Yinghui Li; Zhen Wang; Hui Shi; Hang Li; Leilei Li; Runping Fang; Xiaoli Cai; Bowen Liu; Xiaodong Zhang; Lihong Ye

c-Myc is regarded as a transcription factor, but the basis for its function remains unclear. Here, we define a long noncoding RNA (lncRNA)/protein complex that mediates the transcriptional activation by c-Myc in breast cancer cells. Among 388 c-Myc target genes in human MCF-7 breast cancer cells, we found that their promoters could be occupied by the oncoprotein HBXIP. We confirmed that the HBXIP expression correlated with expression of the c-Myc target genes cyclin A, eIF4E, and LDHA. RNAi-mediated silencing of HBXIP abolished c-Myc-mediated upregulation of these target genes. Mechanistically, HBXIP interacted directly with c-Myc through the leucine zippers and recruited the lncRNA Hotair along with the histone demethylase LSD1, for which Hotair serves as a scaffold. Silencing of HBXIP, Hotair, or LSD1 was sufficient to block c-Myc-enhanced cancer cell growth in vitro and in vivo. Taken together, our results support a model in which the HBXIP/Hotair/LSD1 complex serves as a critical effector of c-Myc in activating transcription of its target genes, illuminating long-standing questions on how c-Myc drives carcinogenesis.


Cancer Letters | 2014

The oncoprotein HBXIP enhances migration of breast cancer cells through increasing filopodia formation involving MEKK2/ERK1/2/Capn4 signaling.

Yinghui Li; Zhao Zhang; Xiaolei Zhou; Leilei Li; Qian Liu; Zhen Wang; Xiao Bai; Yu Zhao; Hui Shi; Xiaodong Zhang; Lihong Ye

We have reported that the oncoprotein hepatitis B X-interacting protein (HBXIP) plays a crucial role in the promotion of migration of breast cancer cells. Lamellipodia and filopodia protrusions play fundamental roles, involving dynamic cytoskeleton reorganization in the metastasis of cancer. Here, we observed that the expression levels of both HBXIP and Calpain small subunit 1 (Capn4) were very high in clinical metastatic lymph nodes of breast tumor. Then, we found that HBXIP was able to up-regulate Capn4 at the levels of promoter, mRNA and protein in breast cancer cells through activation of ERK1/2. Moreover, we showed that HBXIP activated ERK1/2 through up-regulating MEKK2. In function, we revealed that HBXIP increased the filopodia formation through Capn4, resulting in cell migration. Thus, we conclude that the oncoprotein HBXIP enhances the migration of breast cancer through increasing filopodia formation involving MEKK2/ERK1/2/Capn4 signaling. Therapeutically, HBXIP may serve as a novel target in breast cancer.


Cancer Research | 2016

Oncoprotein HBXIP modulates abnormal lipid metabolism and growth of breast cancer cells by activating the LXRs/SREBP-1c/FAS signaling cascade

Yu Zhao; Hang Li; Yingyi Zhang; Leilei Li; Runping Fang; Yinghui Li; Qian Liu; Weiying Zhang; Liyan Qiu; F. Liu; Xiaodong Zhang; Lihong Ye

Abnormal lipid metabolism is a hallmark of tumorigenesis. Accumulating evidence demonstrates that fatty acid synthase (FAS, FASN) is a metabolic oncogene that supports the growth and survival of tumor cells and is highly expressed in many cancers. Here, we report that the oncoprotein, hepatitis B X-interacting protein (HBXIP, LAMTOR5) contributes to abnormal lipid metabolism. We show that high expression of HBXIP in 236 breast cancer patients was significantly associated with decreased overall survival and progression-free survival. Interestingly, the expression of HBXIP was positively related to that of FAS in clinical breast cancer tissues, and HBXIP overexpression in breast cancer cells resulted in FAS upregulation. Mechanistically, HBXIP upregulated SREBP-1c (SREBF1), which activates the transcription of FAS, by directly interacting with and coactivating nuclear receptor (NR) liver X receptors (LXR). Physiologically, LXRs are activated via a coactivator containing NR motif in a ligand-dependent manner. However, in breast cancer cells, HBXIP containing the corepressor/nuclear receptor motif with special flanking sequence could coactivate LXRs independent of ligand. Moreover, overexpressed SREBP-1c was able to activate the transcription of HBXIP, forming a positive-feedback loop. Functionally, HBXIP enhanced lipogenesis, resulting in the growth of breast cancer cells in vitro and in vivo Thus, we conclude that the oncoprotein HBXIP contributes to the abnormal lipid metabolism in breast cancer through LXRs/SREBP-1c/FAS signaling, providing new insights into the mechanisms by which cancer cells reprogram lipid metabolism in their favor. Cancer Res; 76(16); 4696-707. ©2016 AACR.


Journal of Biological Chemistry | 2013

The Nuclear Import of Oncoprotein Hepatitis B X-interacting Protein Depends on Interacting with c-Fos and Phosphorylation of Both Proteins in Breast Cancer Cells

Yingyi Zhang; Yu Zhao; Hang Li; Yinghui Li; Xiaoli Cai; Yu Shen; Hui Shi; Leilei Li; Qian Liu; Xiaodong Zhang; Lihong Ye

Background: The oncoprotein HBXIP acts as a coactivator of transcription factor in cancer. Results: The nuclear import of HBXIP depends on interacting with c-Fos and ATM-mediated phosphorylation of HBXIP and p-ERK1/2-mediated phosphorylation of c-Fos. Conclusion: The nuclear import of HBXIP is required for collaboration with c-Fos. Significance: We provide new insights into the mechanism that HBXIP imports into the nucleus in breast cancer cells. Aberrant nuclear localization of oncogenic transcription factors and coactivators always leads to the development of cancer. We have reported that the oncoprotein hepatitis B X-interacting protein (HBXIP) acts as a novel transcriptional coactivator to promote proliferation and migration of breast cancer cells. However, the mechanism of regulating the nuclear import of HBXIP remains unclear. In the present study, we found that HBXIP interacted with c-Fos through their leucine zipper domains in vitro and in vivo. Interestingly, the leucine zipper mutant of HBXIP (or c-Fos) was unavailable to bind to c-Fos (or HBXIP), resulting in the disappearance of nuclear localization of HBXIP. Moreover, we revealed that the nuclear import of HBXIP was required for phosphorylation of c-Fos at Thr232, Thr325, Thr331, and Ser374 by ERK1/2. In addition, the mutant of HBXIP at the Ser108 phosphorylation site failed to import into the nucleus. Strikingly, we found that the kinase ataxia telangiectasia mutated (ATM) phosphorylated HBXIP at Ser108. The knockdown of ATM by siRNA remarkably decreased the levels of serine phosphorylation and blocked the nuclear import of HBXIP. Then, we identified that ATM could bind to HBXIP. Moreover, we validated that the nuclear import of HBXIP contributed to its nuclear function. Therefore, we conclude that the nuclear import of the oncoprotein HBXIP requires interaction with c-Fos through their leucine zipper domains and phosphorylation of both proteins in breast cancer cells. Thus, our findings provide new insights into the mechanism of the nuclear import of HBXIP. Therapeutically, the block of the nuclear import of HBXIP is significant in breast cancer.


Oncogene | 2016

Deacetylation of tumor-suppressor MST1 in Hippo pathway induces its degradation through HBXIP-elevated HDAC6 in promotion of breast cancer growth

Leilei Li; Runping Fang; Bowen Liu; Hongshun Shi; Yong Wang; Wenhong Zhang; Xiaodong Zhang; Lihong Ye

Reduction or loss of tumor-suppressor mammalian STE20-like kinase 1 (MST1) in Hippo pathway contributes to the tumorigenesis. However, the mechanism leading to reduction of MST1 in cancers remains poorly understood. In this study, we explored the hypothesis that the oncoprotein hepatitis B X-interacting protein (HBXIP) is involved in the reduction of MST1 in breast cancer. Immunohistochemical analysis of tissue microarrays revealed that the expression of HBXIP was negatively associated with that of MST1 in 98 clinical breast tissue samples. Then we found that HBXIP could posttranslationally downregulate MST1 in breast cancer cells. Mechanistically, we identified that MST1 could be acetylated on its lysine 35 residue in the cells. Strikingly, the treatment with trichostatin A, an inhibitor of histone deacetylases (HDACs), markedly increased the levels of MST1 acetylation and protein in the cells. Interestingly, the oncoprotein HBXIP could significantly inhibit acetylation of MST1, resulting in the reduction of MST1 protein. Notably, we revealed that the HDAC6 could reduce the protein levels of MST1 through deacetylation modification of MST1 in the cells. Moreover, our data revealed that HBXIP upregulated HDAC6 at the levels of mRNA and protein by activating transcription factor nuclear factor-κB. Deacetylation of MST1 promoted the interaction of MST1 with HSC70 in the cells, resulting in a lysosome-dependent degradation of MST1 via chaperone-mediated autophagy (CMA). Functionally, the reduction of tumor-suppressor MST1 mediated by HBXIP promoted the growth of breast cancer cells in vitro and in vivo. Thus we conclude that the deacetylation of MST1 mediated by HBXIP-enhanced HDAC6 results in MST1 degradation in a CMA manner in promotion of breast cancer growth. Our finding provides new insights into the mechanism of tumor-suppressor MST1 reduction in breast cancer.


Biochemical and Biophysical Research Communications | 2013

The oncoprotein HBXIP upregulates PDGFB via activating transcription factor Sp1 to promote the proliferation of breast cancer cells.

Yingyi Zhang; Yu Zhao; Leilei Li; Yu Shen; Xiaoli Cai; Xiaodong Zhang; Lihong Ye

We have reported that the oncoprotein hepatitis B virus X-interacting protein (HBXIP) acts as a novel transcriptional coactivator to promote proliferation and migration of breast cancer cells. Previously, we showed that HBXIP was able to activate nuclear factor-κB (NF-κB) in breast cancer cells. As an oncogene, the platelet-derived growth factor beta polypeptide (PDGFB) plays crucial roles in carcinogenesis. In the present study, we found that both HBXIP and PDGFB were highly expressed in breast cancer cell lines. Interestingly, HBXIP was able to increase transcriptional activity of NF-κB through PDGFB, suggesting that HBXIP is associated with PDGFB in the cells. Moreover, HBXIP was able to upregulate PDGFB at the levels of mRNA, protein and promoter in the cells. Then, we identified that HBXIP stimulated the promoter of PDGFB through activating transcription factor Sp1. In function, HBXIP enhanced the proliferation of breast cancer cells through PDGFB in vitro. Thus, we conclude that HBXIP upregulates PDGFB via activating transcription factor Sp1 to promote proliferation of breast cancer cells.


Biochemical and Biophysical Research Communications | 2016

The oncoprotein HBXIP up-regulates FGF4 through activating transcriptional factor Sp1 to promote the migration of breast cancer cells

Hui Shi; Yinghui Li; Guoxing Feng; Leilei Li; Runping Fang; Zhen Wang; Jie Qu; Peijian Ding; Xiaodong Zhang; Lihong Ye

We have reported that the oncoprotein hepatitis B X-interacting protein (HBXIP) is able to promote migration of breast cancer cells. Fibroblast growth factor 4 (FGF4) is a multipotent growth factor and is highly expressed in various human cancers. However, the regulatory mechanism of FGF4 in breast cancer remains poorly understood. In the present study, we report that HBXIP is able to up-regulate FGF4 to enhance the migration of breast cancer cells. Immunohistochemistry staining showed that HBXIP and FGF4 were highly expressed in clinical metastatic lymph nodes of breast tumor. The expression levels of HBXIP were positively related to those of FGF4 in clinical breast cancer tissues. Then, we validated that HBXIP up-regulated the expression of FGF4 at the levels of promoter, mRNA and protein by luciferase reporter gene assays, reverse transcription-polymerase chain reaction and Western blot analysis. Moreover, we found that HBXIP was able to activate FGF4 promoter through transcriptional factor Sp1 by luciferase reporter gene assays. Chromatin immunoprecipitation assays confirmed that HBXIP coactivated Sp1 to stimulate FGF4 promoter. In function, we showed that HBXIP promoted breast cancer cell migration through FGF4 by wound healing and transwell cell migration assays. Thus, we conclude that the oncoprotein HBXIP up-regulates FGF4 through activating transcriptional factor Sp1 to promote the migration of breast cancer cells. Therapeutically, HBXIP may serve as a novel target in breast cancer.


Biochemical and Biophysical Research Communications | 2015

The oncoprotein HBXIP promotes migration of breast cancer cells via GCN5-mediated microtubule acetylation.

Leilei Li; Bowen Liu; Xiaodong Zhang; Lihong Ye

We have documented that the oncoprotein hepatitis B X-interacting protein (HBXIP) is able to promote migration of breast cancer cells. A subset of acetylated microtubules that accumulates in the cell leading edge is necessary for cell polarization and directional migration. In this study, we explored the hypothesis that HBXIP contributes to migration of breast cancer cells by supporting microtubule acetylation in breast cancer cells. We found that HBXIP could induce acetylated microtubules accumulating into the leading protrusion in wound-induced directional migration in breast cancer cells by immunofluorescence staining analysis. Interestingly, HBXIP was able to increase the acetylation of α-tubulin in the cells by immunofluorescence staining and Western blot analysis. Furthermore, we observed that acetyltransferase GCN5 was involved in the event that HBXIP induced increase of acetylated microtubules and their expansion in protrusions in breast cancer cells by Western blot analysis and immunofluorescence staining. Moreover, GCN5 was required for the HBXIP-enhanced migration of breast cancer cells by wound healing assay. Thus, we conclude that HBXIP promotes the migration of breast cancer cells through modulating microtubule acetylation mediated by GCN5. Therapeutically, HBXIP may serve as a novel target in breast cancer.


Journal of Hematology & Oncology | 2018

Oncoprotein HBXIP enhances HOXB13 acetylation and co-activates HOXB13 to confer tamoxifen resistance in breast cancer

Bowen Liu; Tianjiao Wang; Huawei Wang; Lu Zhang; Feifei Xu; Runping Fang; Leilei Li; Xiaoli Cai; Yue Wu; Weiying Zhang; Lihong Ye

BackgroundResistance to tamoxifen (TAM) frequently occurs in the treatment of estrogen receptor positive (ER+) breast cancer. Accumulating evidences indicate that transcription factor HOXB13 is of great significance in TAM resistance. However, the regulation of HOXB13 in TAM-resistant breast cancer remains largely unexplored. Here, we were interested in the potential effect of HBXIP, an oncoprotein involved in the acceleration of cancer progression, on the modulation of HOXB13 in TAM resistance of breast cancer.MethodsThe Kaplan-Meier plotter cancer database and GEO dataset were used to analyze the association between HBXIP expression and relapse-free survival. The correlation of HBXIP and HOXB13 in ER+ breast cancer was assessed by human tissue microarray. Immunoblotting analysis, qRT-PCR assay, immunofluorescence staining, Co-IP assay, ChIP assay, luciferase reporter gene assay, cell viability assay, and colony formation assay were performed to explore the possible molecular mechanism by which HBXIP modulates HOXB13. Cell viability assay, xenograft assay, and immunohistochemistry staining analysis were utilized to evaluate the effect of the HBXIP/HOXB13 axis on the facilitation of TAM resistance in vitro and in vivo.ResultsThe analysis of the Kaplan-Meier plotter and the GEO dataset showed that mono-TAM-treated breast cancer patients with higher HBXIP expression levels had shorter relapse-free survivals than patients with lower HBXIP expression levels. Overexpression of HBXIP induced TAM resistance in ER+ breast cancer cells. The tissue microarray analysis revealed a positive association between the expression levels of HBXIP and HOXB13 in ER+ breast cancer patients. HBXIP elevated HOXB13 protein level in breast cancer cells. Mechanistically, HBXIP prevented chaperone-mediated autophagy (CMA)-dependent degradation of HOXB13 via enhancement of HOXB13 acetylation at the lysine 277 residue, causing the accumulation of HOXB13. Moreover, HBXIP was able to act as a co-activator of HOXB13 to stimulate interleukin (IL)-6 transcription in the promotion of TAM resistance. Interestingly, aspirin (ASA) suppressed the HBXIP/HOXB13 axis by decreasing HBXIP expression, overcoming TAM resistance in vitro and in vivo.ConclusionsOur study highlights that HBXIP enhances HOXB13 acetylation to prevent HOXB13 degradation and co-activates HOXB13 in the promotion of TAM resistance of breast cancer. Therapeutically, ASA can serve as a potential candidate for reversing TAM resistance by inhibiting HBXIP expression.

Collaboration


Dive into the Leilei Li's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge