Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leilei Tao is active.

Publication


Featured researches published by Leilei Tao.


Oncotarget | 2017

Long noncoding RNA ROR regulates chemoresistance in docetaxel-resistant lung adenocarcinoma cells via epithelial mesenchymal transition pathway

Yan Pan; Jing Chen; Leilei Tao; Kai Zhang; Rui Wang; Xiaoyuan Chu; Longbang Chen

Emerging evidence indicates that the dysregulation of long non-coding RNAs (lncRNAs) contributes to the development and progression of lung adenocarcinoma (LAD), however the underlying mechanism of action of lncRNAs remains unclear. It is well known that the effective treatment of cancers has been hindered by drug resistance in the clinical setting. Epithelial-mesenchymal transition (EMT) has been recognized to be involved in acquiring drug resistance, cell migration and invasion properties in several types of cancer. Docetaxel-resistant LAD cells established previously in our lab present chemoresistant and mesenchymal features. Long intergenic non-protein coding RNA, regulator of reprogramming (linc-ROR), was first discovered in induced pluripotent stem cells (iPSCs) and was upregulated in docetaxel-resistant LAD cells. In this study, we tried to make clarification of lincRNA-related mechanisms underlying EMT followed by acquired resistance to chemotherapy in LAD. In order to hit the mark, we made use of multiple methods including microarray analysis, qRT-PCR, western blotting analysis, loss/gain-of-function analysis, luciferase assays, drug sensitivity assays, wound-healing assay and invasion assay. We found that decreased expression of linc-ROR effectively reversed EMT in docetaxel-resistant LAD cells and sensitized them to chemotherapy. The function of linc-ROR exerted in LAD cells depended on the sponging of miR-145, therefore, releasing the miR-145 target FSCN1, and thus contributing to the acquisition of chemoresistance and EMT phenotypes of docetaxel-resistant LAD cells. Our findings revealed that linc-ROR might act as potential therapeutic target to overcome chemotherapy resistance in LAD.


Oncology Letters | 2017

Cancer associated fibroblasts: An essential role in the tumor microenvironment (Review)

Leilei Tao; Guichun Huang; Haizhu Song; Yitian Chen; Longbang Chen

Fibroblasts in the tumor stroma are well recognized as having an indispensable role in carcinogenesis, including in the initiation of epithelial tumor formation. The association between cancer cells and fibroblasts has been highlighted in several previous studies. Regulation factors released from cancer-associated fibroblasts (CAFs) into the tumor microenvironment have essential roles, including the support of tumor growth, angiogenesis, metastasis and therapy resistance. A mutual interaction between tumor-induced fibroblast activation, and fibroblast-induced tumor proliferation and metastasis occurs, thus CAFs act as tumor supporters. Previous studies have reported that by developing fibroblast-targeting drugs, it may be possible to interrupt the interaction between fibroblasts and the tumor, thus resulting in the suppression of tumor growth, and metastasis. The present review focused on the reciprocal feedback loop between fibroblasts and cancer cells, and evaluated the potential application of anti-CAF agents in the treatment of cancer.


Cellular Physiology and Biochemistry | 2017

MiRNA-26a Contributes to the Acquisition of Malignant Behaviors of Doctaxel-Resistant Lung Adenocarcinoma Cells through Targeting EZH2

Jing Chen; Yuejuan Xu; Leilei Tao; Yan Pan; Kai Zhang; Rui Wang; Longbang Chen; Xiaoyuan Chu

Background/Aims: Accumulating evidence revealed that microRNAs (miRNAs) have been demonstrated as critical molecules in tumor development and progression. MiR-26a, located in a fragile chromosomal region associated with various human cancer, has been reported to be involved in regulating various cellular process, such as proliferation, apoptosis and invasion through targeting multiple oncogene. Docetaxel-mediated chemotherapy has been applied in improving the survival and prognosis of patients with advanced lung adenocarcinoma (LAD). However, chemoresistance remains a major impediment to clinical application of this agent. It has been presented that decreased miR-26a expression lead to cisplatin resistance and promoted growth and migration in human lung cancer. Enhancer of zeste homolog 2 (EZH2) is the target of miR-26a. The present study aimed to investigate the function of miR-26a/EZH2 in the acquisition of malignant behaviors of LAD. Methods: MiR-26a and EZH2 expression levels in the dcetaxel-insensitive groups (n = 19) and the docetaxel-sensitive groups (n = 18) were assessed by qRT-PCR. Colony formation assay, flow cytometric analysis, wound healing assay, cell transwell assays and western blotting were performed to assess the effects of miR-26a on proliferation, apoptosis and epithelial-to-mesenchymal (EMT) phenotypes in docetaxel resistant LAD cells in vitro. Xenograft transplantation, immunohistochemistry, tunel assays and western blotting assays were employed to demonstrate the role of miR-26a in docetaxel resistant LAD cells in vivo. The expression level of EZH2 in docetaxel-resistant LAD cells and corresponding parental cells was detected by qRT-PCR and western blotting. The relationship between miR-26a and EZH2 was confirmed by luciferase reporter assay. And rescue assays were performed to further confirm that miRNA-26a contributes to the acquisition of malignant behaviors of docetaxel-resistant LAD cells through targeting EZH2. Results: MiR-26a was significantly down-regulated in the dcetaxel-insensitive groups (n = 19) compared with the docetaxel-sensitive groups (n = 18) assessed by qRT-PCR. MiR-26a decreased the proliferation, increased the apoptosis rate and reversed EMT to MET of docetaxel-resistant LAD cells both in vivo and vitro. EZH2 was confirmed as target of miR-26a. Rescue assays further verified that the function of miR-26a exerts in docetaxel-resistant LAD cells is through targeting EZH2. Conclusions: Our data revealed that overexpression of miR-26a in docetaxel-resistant LAD cells could decrease the proliferation, increase the apoptosis rate and reverse EMT to MET of docetaxel-resistant LAD cells both in vivo and vitro and such function is partially exerted via downregulating EZH2. MiR-26a/EZH2 signal pathway makes contribute to the malignant phenotype of docetaxel-resistant of LAD cells which indicated that miR-26a exerts pivotal functions in the molecular etiology of chemoresistant lung adenocarcinoma.


World Journal of Gastroenterology | 2014

Expression of monocyte chemotactic protein-1/CCL2 in gastric cancer and its relationship with tumor hypoxia

Leilei Tao; Shujing Shi; Longbang Chen; Guichun Huang

AIM To investigate the expression and prognostic value of CCL2 in gastric cancer, as well as its relationship with tumor hypoxia. METHODS Tumor tissues from 68 gastric cancer patients (GC) were analyzed, and the expression of CCL2 and hypoxia-inducible factor 1 alpha (HIF-1α) in tumor tissues was detected by immunohistochemistry. Statistical evaluations that were used included univariate log-rank tests of Kaplan-Meier curves and multivariate Cox regression model analysis. RESULTS CCL2 was highly expressed in 66.2% (45/68) of gastric cancer specimens. The distribution of CCL2 expression in tumor tissue was consistent with that of HIF-1α. Patients with high CCL2 expression in GC had a lower overall survival rate [50.6 mo (95%CI: 44.44-56.93) vs 64.6 mo (95%CI: 60.27-68.94), P = 0.013]. CONCLUSION CCL2 expression correlates closely with HIF-1α expression in gastric cancer. CCL2 may be an independent prognostic marker for GC.


Medical Oncology | 2014

Bevacizumab improves the antitumor efficacy of adoptive cytokine-induced killer cells therapy in non-small cell lung cancer models.

Leilei Tao; Guichun Huang; Shujing Shi; Longbang Chen

Cytokine-induced killer cells (CIK cells) are a heterogeneous population of cells generated from peripheral blood mononuclear cells, which share phenotypic and functional properties with both natural killer and T cells. CIK cells therapy, as an adoptive immunotherapy with strong antitumor activity in vitro, represents a promising approach for the treatment of a broad array of malignant tumors. However, clinical trials in CIK cells therapy did not show more noticeable improvement as anticipated in cure rates or long-term survival. Possible explanations are that abnormal tumor vasculature and hypoxic microenvironment may highly limit the therapeutic benefits of CIK cells therapy. We hypothesized that antiangiogenesis therapy could enhance the antitumor efficacy of CIK cells by normalizing tumor vasculature and modulating tumor hypoxic microenvironment. In this study, we combined bevacizumab and adoptive CIK cells therapy in the treatment of lung adenocarcinoma bearing murine models. Flow cytometry, intravital microscopy and immunohistochemistry were applied to detect tumor vasculature and hypoxic microenvironment as well as the infiltration of CIK cells. The results indicated that bevacizumab-combined adoptive CIK cells had synergistic inhibition effects on the growth of lung adenocarcinoma. Hypoxia significantly inhibited the infiltration of CIK cells into tumor tissue. Bevacizumab could normalize tumor vasculature and decrease tumor hypoxic area. Furthermore, combination therapy enhanced more CIK cells infiltrated into tumor compared with other treatment. Bevacizumab improves antitumor efficacy of CIK cells transfer therapy in non-small cell lung cancer (NSCLC). The study provides a reasonable and beneficial strategy that combined antiangiogenesis therapy with CIK cells therapy for patients of advanced stage non-small cell lung cancer.


Scientific Reports | 2016

Cancer-associated fibroblasts treated with cisplatin facilitates chemoresistance of lung adenocarcinoma through IL-11/IL-11R/STAT3 signaling pathway

Leilei Tao; Guichun Huang; Rui Wang; Yan Pan; Zhenyue He; Xiaoyuan Chu; Haizhu Song; Longbang Chen

Cancer-associated fibroblasts (CAF) are recognized as one of the key determinants in the malignant progression of lung adenocarcinoma. And its contributions to chemoresistance acquisition of lung cancer has raised more and more attention. In our study, cancer associated fibroblasts treated with cisplatin conferred chemoresistance to lung cancer cells. Meanwhile, Interleukin-11(IL-11) was significantly up-regulated in the CAF stimulated by cisplatin. As confirmed in lung adenocarcinoma cells in vivo and in vitro, IL-11 could protect cancer cells from cisplatin-induced apoptosis and thus promote their chemoresistance. Furthermore, it was also observed that IL-11 induced STAT3 phosphorylation and increased anti-apoptotic protein Bcl-2 and Survivin expression in cancer cells. The effect could be abrogated by suppressing STAT3 phosphorylation or silencing IL-11Rα expression in cancer cells. In conclusion, chemotherapy-induced IL-11 upregulation in CAF promotes lung adenocarcinoma cell chemoresistance by activating IL-11R/STAT3 anti-apoptotic signaling pathway.


Cancer Biotherapy and Radiopharmaceuticals | 2015

DNA methylation of DKK3 modulates docetaxel chemoresistance in human nonsmall cell lung cancer cell.

Leilei Tao; Guichun Huang; Yitian Chen; Longbang Chen

Dickkopf-related protein 3 (DKK3) gene, as a tumor suppressor gene, has been discovered in various cancers, but its relationship with tumor chemoresistance is still unclear. In this study, this laboratory detected that DNA methylation contributes to the downregulation of DKK3 in docetaxel resistance of human lung cancer cells and its possible biochemical mechanism. DKK3 has been proved to be downregulated by hypermethylation in docetaxel-resistant lung cancer cells. Upregulation of DKK3 can reverse the chemoresistance of docetaxel-resistant cell lines in vitro by growth inhibition and enhancement of apoptosis. Conversely, downregulation of DKK3 could induce parental human lung cancer cells insensitivity to docetaxel by promoting proliferative capacity and inhibiting apoptosis of cancer cells. In addition, the authors observed that overexpression of DKK3 might decrease the expression of P-glycoprotein. All results suggested that epigenetic downregulation of DKK3 leads to docetaxel resistance in human nonsmall cell lung cancer (NSCLC) cells by increased expression of P-glycoprotein. DKK3 may reveal a novel molecular target for docetaxel resistance for NSCLC patients in the future.


Apmis | 2014

Synergistic antitumor effect of combining metronomic chemotherapy with adoptive cell immunotherapy in nude mice

Shujing Shi; Leilei Tao; Haizhu Song; Longbang Chen; Guichun Huang

Adoptive cell immunotherapy with cytokine‐induced killer cell (CIK cell) represents a promising non‐toxic anticancer therapy. However, the clinical efficacy of CIK cells is limited because of abnormal tumor vasculature. Metronomic chemotherapy shows promising anticancer activity by its potential antiangiogenic effect and reduced toxicity. We hypothesized that metronomic chemotherapy with paclitaxel could improve the antitumor effect of adoptive CIK cell immunotherapy. Mice health status was analyzed by measuring mice weight and observing mice behavior. Immunohistochemistry was used to investigate the recruitment of CIK cells, the expression of endothelial cell molecules, as well as the hypoxic tumor area. Metronomic paclitaxel synergized with adoptive CIK cell immunotherapy to inhibit the growth of non‐small cell lung cancer (NSCLC). Metronomic paclitaxel reduced hypoxic tumor area and increased CIK cell infiltration. Hypoxia impeded the adhesion of CIK cells and reduced the expression of endothelial cell adhesion molecules. In vivo studies demonstrated that more CIK cells were found in endothelial cell adhesion molecules high expressed area. Our study provides a new rationale for combining metronomic chemotherapy with adoptive cell immunotherapy in the treatment of xenograft NSCLC tumors in immunodeficient mice. Further clinical trials integrating translational research are necessary to better evaluate the clinical benefit of this promising approach.


Scientific Reports | 2016

Hypoxia induced CCL28 promotes angiogenesis in lung adenocarcinoma by targeting CCR3 on endothelial cells

Guichun Huang; Leilei Tao; Sunan Shen; Longbang Chen

Tumor hypoxia is one of the important features of lung adenocarcinoma. Chemokines might mediate the effects caused by tumor hypoxia. As confirmed in tumor tissue and serum of patients, CC chemokine 28 (CCL28) was the only hypoxia induced chemokine in lung adenocarcinoma cells. CCL28 could promote tube formation, migration and proliferation of endothelial cells. In addition, angiogenesis was promoted by CCL28 in the chick chorioallantoic membrane and matrigel implanted in dorsal back of athymic nude mice (CByJ.Cg-Foxn1nu/J). Tumors formed by lung adenocarcinoma cells with high expression of CCL28 grew faster and had a higher vascular density, whereas tumor formation rate of lung adenocarcinoma cells with CCL28 expression knockdown was quite low and had a lower vascular density. CCR3, receptor of CCL28, was highly expressed in vascular endothelial cells in lung adenocarcinoma when examining by immunohistochemistry. Further signaling pathways in endothelial cells, modulated by CCL28, were analyzed by Phosphorylation Antibody Array. CCL28/CCR3 signaling pathway could bypass that of VEGF/VEGFR on the levels of PI3K-Akt, p38 MAPK and PLC gamma. The effects could be neutralized by antibody against CCR3. In conclusion, CCL28, as a chemokine induced by tumor hypoxia, could promote angiogenesis in lung adenocarcinoma through targeting CCR3 on microvascular endothelial cells.


Cellular Physiology and Biochemistry | 2018

The Role of Canonical Wnt Signaling in Regulating Radioresistance

Yuanyuan Zhao; Leilei Tao; Jun Yi; Haizhu Song; Longbang Chen

Radioresistance is a major obstacle in radiotherapy for cancer, and strategies are needed to overcome this problem. Currently, radiotherapy combined with targeted therapy such as inhibitors of phosphoinosotide 3-kinase/Akt and epidermal growth factor receptor signaling have become the focus of studies on radiosensitization. Apart from these two signaling pathways, which promote radioresistance, deregulation of Wnt signaling is also associated with the radioresistance of multiple cancers. Wnts, as important messengers in the tumor microenvironment, are involved in cancer progression mainly via canonical Wnt signaling. Their role in promoting DNA damage repair and inhibiting apoptosis facilitates cancer resistance to radiation. Thus, it seems reasonable to target Wnt signaling as a method for overcoming radioresistance. Many small-molecule inhibitors that target the Wnt signaling pathway have been identified and shown to promote radiosensitization. Therefore, a Wnt signaling inhibitor may help to overcome radioresistance in cancer therapy.

Collaboration


Dive into the Leilei Tao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge