Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leilei Wang is active.

Publication


Featured researches published by Leilei Wang.


Developmental and Comparative Immunology | 2010

The second anti-lipopolysaccharide factor (EsALF-2) with antimicrobial activity from Eriocheir sinensis

Ying Zhang; Lingling Wang; Leilei Wang; Jialong Yang; Yunchao Gai; Limei Qiu; Linsheng Song

The anti-lipopolysaccharide factor (ALF) is a small basic protein that can bind and neutralize lipopolysaccharide (LPS), mediating degranulation and activation of an intracellular coagulation cascade. In the present study, cDNA of the second Eriocheir sinensis ALF (designated as EsALF-2) was cloned and the full-length cDNA of EsALF-2 was of 724bp, consisting of an open reading frame (ORF) of 363bp encoding a polypeptide of 120 amino acids. The deduced amino acid of EsALF-2 shared 82% similarity with EsALF-1 from E. sinensis and about 53-65% similarity with ALFs from other crustaceans. The potential tertiary structures of EsALF-1 and EsALF-2 contained two highly conserved-cysteine residues to define the LPS binding site, but the N-terminal of EsALF-1 formed a single additional alpha-helix compared to EsALF-2, implying that EsALF-1 and EsALF-2 might represent different biological functions in E. sinensis. The mRNA transcript of EsALF-2 was detected in all examined tissues of healthy crabs, including haemocytes, hepatopancreas, gill, muscle, heart and gonad, which suggested that EsALF-2 could be a multifunctional molecule for the host immune defense responses and thereby provided systemic protection against pathogens. The mRNA expression of EsALF-2 was up-regulated after Listonella anguillarum and Pichia pastoris challenge and the recombinant protein of EsALF-2 showed antimicrobial activity against L. anguillarum and P. pastoris, indicating that EsALF-2 was involved in the immune defense responses in Chinese mitten crab against L. anguillarum and P. pastoris. These results together indicated that there were abundant and diverse ALFs in E. sinensis with various biological functions and these ALFs would provide candidate promising therapeutic or prophylactic agents in health management and diseases control of crab aquaculture.


Fish & Shellfish Immunology | 2013

A novel C-type lectin from crab Eriocheir sinensis functions as pattern recognition receptor enhancing cellular encapsulation.

Leilei Wang; Lingling Wang; Daoxiang Zhang; Fengmei Li; Mengqiang Wang; Mengmeng Huang; Huan Zhang; Linsheng Song

C-type lectins are a large family of Ca²⁺-dependent carbohydrate binding proteins which play crucial roles to recognize and eliminate pathogens in innate immunity. In the present study, a novel C-type lectin was identified from Eriocheir sinensis (designated as EsCTL). The full-length cDNA of EsCTL was of 789 bp with an open reading frame of 468 bp encoding a polypeptide of 156 amino acids with a signal sequence and single carbohydrate-recognition domain (CRD). The potential tertiary structure of the CRD adopted a typical double-loop structure with Ca²⁺-binding site 2 in the long loop region and two conserved disulfide bridges at the bases of the loops. An EPQ motif to determine carbohydrate binding specificity was identified in the CRD of EsCTL. The mRNA transcripts of EsCTL were mainly detected in hepatopancreas and its relative expression level in hemocytes was significantly up-regulated after the challenges of Vibrio anguillarum (P < 0.05) and Pichia pastoris (P < 0.05). The recombinant EsCTL protein (rEsCTL) could bind different PAMPs, including LPS, PGN, β-glucan, and polyI:C; and also bind various microorganisms including three Gram-positive bacteria, three Gram-negative bacteria and two yeasts. Moreover, rEsCTL could significantly enhance the in vitro encapsulation of crab hemocytes. All these results suggested that EsCTL functioned as an important PRR involved in immune defense against invading pathogen in crab.


PLOS ONE | 2012

A C1q domain containing protein from scallop Chlamys farreri serving as pattern recognition receptor with heat-aggregated IgG binding activity.

Leilei Wang; Lingling Wang; Huan Zhang; Zhi Zhou; Vinu S. Siva; Linsheng Song

Background The C1q domain containing (C1qDC) proteins refer to a family of all proteins that contain the globular C1q (gC1q) domain, and participate in a series of immune responses depending on their gC1q domains to bind a variety of self and non-self binding ligands. Methodology In the present study, the mRNA expression patterns, localization, and activities of a C1qDC protein from scallop Chlamys farreri (CfC1qDC) were investigated to understand its possible functions in innate immunity. The relative expression levels of CfC1qDC mRNA in hemocytes were all significantly up-regulated after four typical PAMPs (LPS, PGN, β-glucan and polyI:C) stimulation. During the embryonic development of scallop, the mRNA transcripts of CfC1qDC were detected in all the stages, and the expression level was up-regulated from D-hinged larva and reached the highest at eye-spot larva. The endogenous CfC1qDC was dominantly located in the hepatopancreas, gill, kidney and gonad of adult scallop through immunofluorescence. The recombinant protein of CfC1qDC (rCfC1qDC) could not only bind various PAMPs, such as LPS, PGN, β-glucan as well as polyI:C, but also enhance the phagocytic activity of scallop hemocytes towards Escherichia coli. Meanwhile, rCfC1qDC could interact with human heat-aggregated IgG, and this interaction could be inhibited by LPS. Conclusions All these results indicated that CfC1qDC in C. farreri not only served as a PRR involved in the PAMPs recognition, but also an opsonin participating in the clearance of invaders in innate immunity. Moreover, the ability of CfC1qDC to interact with immunoglobulins provided a clue to understand the evolution of classical pathway in complement system.


Fish & Shellfish Immunology | 2012

Immune response and energy metabolism of Chlamys farreri under Vibrio anguillarum challenge and high temperature exposure

Xingqiang Wang; Lingling Wang; Huan Zhang; Qingzhi Ji; Linsheng Song; Limei Qiu; Zhi Zhou; Mengqiang Wang; Leilei Wang

The complex interactions among host, pathogen and environment are believed to be the main causes for the mass mortality of cultured scallops during summer period. In the present study, the temporal variations of immune and energy parameters of Chlamys farreri under Vibrio anguillarum challenge, higher temperature (29°C) exposure as well as their combined treatment were investigated in order to better understand the energetic mechanisms of scallop immune defense. After the treatments, the superoxide anion level, the activities of superoxide dismutase (SOD) and acid phosphatase, as well as heat shock protein 70 expression level in the hemolymph of scallops increased substantially within 48 h. And as time progressed, the malondialdehyde content in the serum of scallops in the higher temperature treated and the combined stress treated groups were significantly increased, while the SOD activity was significantly depressed (96 h, P<0.05). After 3 h, a significant decline (P<0.05) in glycogen reserves was observed in the examined tissues of all the scallops in the bacteria challenged, higher temperature treated and the combined stress treated groups. The cellular energy allocation (CEA) in the examined tissues dropped considerably when the treatments lasted 48 h. There was a significant decline in the CEA and a significant increase in the energy consumption in the examined tissues compared with other treatments when the scallops were exposed to the combined stress for 96 h (P<0.05). All the results demonstrated that the antioxidant systems and acute phase response system in scallops were not enough to wholly repair oxidative damage caused by higher temperature and the combined stress with bacteria challenge, and glycogen reserved in relative tissues were mobilized to meet the increased energy demands during the process of immune defense. Immune defense against the combined stress imposed greater costs on scallops energy expenditure than either stressor alone, and CEA could be a useful tool to evaluate energetic allocation. The information provided valuable insights into possible mechanisms of scallop mass mortalities during summer period.


Developmental and Comparative Immunology | 2010

An ancient C-type lectin in Chlamys farreri (CfLec-2) that mediate pathogen recognition and cellular adhesion

Jialong Yang; Limei Qiu; Xiumei Wei; Leilei Wang; Lingling Wang; Zhi Zhou; Huan Zhang; Lin Liu; Linsheng Song

C-type lectins are a superfamily of Ca(2+) dependent carbohydrate-recognition proteins which play significant diverse roles in nonself-recognition and clearance of invaders. In the present study, a C-type lectin (CfLec-2) from Zhikong scallop Chlamys farreri was selected to investigate its functions in innate immunity. The mRNA expression of CfLec-2 in hemocytes was significantly up-regulated (P<0.01) after scallops were stimulated by LPS, PGN or β-glucan, and reached the highest expression level at 12h post-stimulation, which was 72.5-, 23.6- or 43.8-fold compared with blank group, respectively. The recombinant CfLec-2 (designated as rCfLec-2) could bind LPS, PGN, mannan and zymosan in vitro, but it could not bind β-glucan. Immunofluorescence assay with polyclonal antibody specific for CfLec-2 revealed that CfLec-2 was mainly located in the mantle, kidney and gonad. Furthermore, rCfLec-2 could bind to the surface of scallop hemocytes, and then initiated cellular adhesion and recruited hemocytes to enhance their encapsulation in vitro, and this process could be specifically blocked by anti-rCfLec-2 serum. These results collectively suggested that CfLec-2 from the primitive deuterostome C. farreri could perform two distinct immune functions, pathogen recognition and cellular adhesion synchronously, while these functions were performed by collectins and selectins in vertebrates, respectively. The synchronous functions of pathogen recognition and cellular adhesion performed by CfLec-2 tempted us to suspect that CfLec-2 was an ancient form of C-type lectin, and apparently the differentiation of these two functions mediated by C-type lectins occurred after mollusk in phylogeny.


Developmental and Comparative Immunology | 2010

AiC1qDC-1, a novel gC1q-domain-containing protein from bay scallop Argopecten irradians with fungi agglutinating activity.

Pengfei Kong; Huan Zhang; Lingling Wang; Zhi Zhou; Jialong Yang; Ying Zhang; Limei Qiu; Leilei Wang; Linsheng Song

The globular C1q-domain-containing (C1qDC) proteins are a family of versatile pattern recognition receptors via their globular C1q (gC1q) domain to bind various ligands including several PAMPs on pathogens. In this study, a new gC1q-domain-containing protein (AiC1qDC-1) gene was cloned from Argopecten irradians by rapid amplification of cDNA ends (RACE) approaches and expressed sequence tag (EST) analysis. The full-length cDNA of AiC1qDC-1 was composed of 733bp, encoding a signal peptide of 19 residues and a typical gC1q domain of 137 residues containing all eight invariant amino acids in human C1qDC proteins and seven aromatic residues essential for effective packing of the hydrophobic core of AiC1qDC-1. The gC1q domain of AiC1qDC-1, which possessed the typical 10-stranded beta-sandwich fold with a jelly-roll topology common to all C1q family members, showed high homology not only to those of C1qDC proteins in mollusk but also to those of C1qDC proteins in human. The AiC1qDC-1 transcripts were mainly detected in the tissue of hepatopancreas and also marginally detectable in adductor, heart, mantle, gill and hemocytes by fluorescent quantitative real-time PCR. In the microbial challenge experiment, there was a significant up-regulation in the relative expression level of AiC1qDC-1 in hepatopancreas and hemocytes of the scallops challenged by fungi Pichia pastoris GS115, Gram-positive bacteria Micrococcus luteus and Gram-negative bacteria Listonella anguillarum. The recombinant AiC1qDC-1 (rAiC1qDC-1) protein displayed no obvious agglutination against M. luteus and L. anguillarum, but it aggregated P. pastoris remarkably. This agglutination could be inhibited by d-mannose and PGN but not by LPS, glucan or d-galactose. These results indicated that AiC1qDC-1 functioned as a pattern recognition receptor in the immune defense of scallops against pathogens and provided clues for illuminating the evolution of the complement classical pathway.


Fish & Shellfish Immunology | 2011

A novel C-type lectin from bay scallop Argopecten irradians (AiCTL-7) agglutinating fungi with mannose specificity.

Pengfei Kong; Lingling Wang; Huan Zhang; Xiaoyan Song; Zhi Zhou; Jialong Yang; Limei Qiu; Leilei Wang; Linsheng Song

C-type lectins are a superfamily of proteins that can bind pathogen-associated molecular patterns (PAMPs) and microorganisms through the recognition of carbohydrates, thus they are directly involved in innate defense mechanisms as part of the acute-phase response to infection. In this study, the cDNA of a novel C-type lectin (designated as AiCTL-7) was cloned from bay scallop Argopecten irradians by expression sequence tag (EST) analysis and rapid amplification of cDNA ends (RACE) approach. The full-length cDNA of AiCTL-7 was of 651 bp containing a 525 bp open reading frame which encoded a signal peptide of 15 residues and a conserved carbohydrate-recognition domain (CRD) of 174 residues with the EPD and WSD motifs instead of the invariant EPN and WND motifs for determining the carbohydrate-binding specificity and constructing Ca(2+)-binding site 2 in vertebrates. The deduced amino acid sequence of AiCTL-7 CRD shared homology not only with the CRDs of C-type lectins in mollusks, but also with the fish lectin CRDs. The mRNA transcripts of AiCTL-7 were mainly detected in the tissue of hepatopancreas and also marginally detectable in kidney, gonad, hemocytes, heart and adductor of health scallop. After challenge with fungi Pichia pastoris GS115 and Gram-negative bacteria Listonella anguillarum, the relative expression level of AiCTL-7 was up-regulated significantly in hepatopancreas and hemocytes. The CRD of AiCTL-7 was recombined and expressed in Escherichia coli, and the recombinant protein (rAiCTL-7) aggregated P. pastoris remarkably in a Ca(2+)-dependent manner, and this agglutination could be inhibited by d-mannose, but not by d-galactose or β-1,3-glucan. However, rAiCTL-7 displayed no obvious agglutinating activity against L. anguillarum. These results collectively indicated that AiCTL-7 was involved in the primitive acute-phase response to microbial invasion as an important pattern recognition receptor (PRR) in the innate immune system of scallops.


Fish & Shellfish Immunology | 2012

The phenoloxidase activity and antibacterial function of a tyrosinase from scallop Chlamys farreri

Zhi Zhou; Duojiao Ni; Mengqiang Wang; Lingling Wang; Leilei Wang; Xiaowei Shi; Feng Yue; Rui Liu; Linsheng Song

Tyrosinase (TYR), also known as monophenol monooxygenase, is a ubiquitous binuclear copper-containing enzyme which catalyzes the hydroxylation of phenols to catechols and the oxidation of catechols to quinones. In the present study, the cDNA of a tyrosinase (CfTYR) was identified from scallop Chlamys farreri, which encoded a polypeptide of 486 amino acids. The CfTYR mRNA transcripts were expressed in all the tested tissues, including haemocytes, adductor muscle, kidney, hepatopancreas, gill, gonad and mantle, with the highest level in mantle. The expression level of CfTYR mRNA in haemocytes decreased significantly during 3-6 h after LPS stimulation, and reached the lowest level at 6 h (0.05-fold, P < 0.05). Then, it began to increase at 12 h (0.32-fold, P > 0.05), and reached the highest level at 24 h (2.91-fold, P < 0.05). At 3 h after LPS stimulation, the phenoloxidase activity catalyzing L-dopa and dopamine in haemolymph increased significantly to 53.13 and 40.36 U mg(-1) respectively, but it decreased to 10.82 U mg(-1) and even undetectable level after CfTYR activity was inhibited. Furthermore, the antibacterial activity of haemolymph against Escherichia coli was also increased significantly at 3 h after LPS stimulation, but it decreased significantly when the haemolymph was treated by TYR inhibitor. The recombinant protein of the mature CfTYR peptide expressed in the in vitro Glycoprotein Expression Kit displayed phenoloxidase activity of 64.36 ± 5.51 U mg(-1) in the present of trypsinase and Cu(2+). These results collectively suggested that CfTYR was a homologue of tyrosinase in scallop C. farreri with the copper-dependence phenoloxidase activity, and it could be induced after immune stimulation and mediate immune response for the elimination of invasive pathogens in scallop.


Scientific Reports | 2015

CfLec-3 from scallop: an entrance to non-self recognition mechanism of invertebrate C-type lectin

Jialong Yang; Mengmeng Huang; Huan Zhang; Lingling Wang; Hao Wang; Leilei Wang; Limei Qiu; Linsheng Song

A C-type lectin (CfLec-3) from Chlamys farreri with three carbohydrate-recognition domains (CRDs) was selected to dissect the possible mechanisms of PAMP binding and functional differentiation of invertebrate lectins. CfLec-3 distributed broadly, and its mRNA expression in hemocytes increased significantly after stimulations with LPS, PGN or β-glucan, but not poly(I:C). The recombinant CfLec-3 (rCfLec-3) could bind PAMPs and several microbes. rCfLec-3 mediated hemocytes phagocytosis against Escherichia coli and encapsulation towards agarose beads. Obvious functional differentiation occurred among the three CRDs, as CRD1 exhibited higher activity to bind PAMPs, while CRD2/3 were expert in promoting hemocyte mediated opsonisation. The tertiary structural differences were suspected to be associated with such functional differentiation. PAMP binding abilities of CfLec-3 were determined by Ca2+-binding site 2 motif. When Pro in this motif of each CRD was mutated into Ser, their PAMP binding abilities were deprived absolutely. rCRD2 acquired mannan binding capability when its EPD was replaced by EPN, but lost when EPN in rCRD3 was changed into EPD. The Pro in Ca2+-binding site 2 was indispensable for PAMPs binding, while Asn was determinant for specific binding to mannan. It shed new insight into PAMPs binding mechanism of invertebrate C-type lectins and their functional differentiation.


PLOS ONE | 2013

A Scallop Nitric Oxide Synthase (NOS) with Structure Similar to Neuronal NOS and Its Involvement in the Immune Defense

Qiufen Jiang; Zhi Zhou; Leilei Wang; Lingling Wang; Feng Yue; Jingjing Wang; Linsheng Song

Background Nitric oxide synthase (NOS) is responsible for synthesizing nitric oxide (NO) from L-arginine, and involved in multiple physiological functions. However, its immunological role in mollusc was seldom reported. Methodology In the present study, an NOS (CfNOS) gene was identified from the scallop Chlamys farreri encoding a polypeptide of 1486 amino acids. Its amino acid sequence shared 50.0~54.7, 40.7~47.0 and 42.5~44.5% similarities with vertebrate neuronal (n), endothelial (e) and inducible (i) NOSs, respectively. CfNOS contained PDZ, oxygenase and reductase domains, which resembled those in nNOS. The CfNOS mRNA transcripts expressed in all embryos and larvae after the 2-cell embryo stage, and were detectable in all tested tissues with the highest level in the gonad, and with the immune tissues hepatopancreas and haemocytes included. Moreover, the immunoreactive area of CfNOS distributed over the haemocyte cytoplasm and cell membrane. After LPS, β-glucan and PGN stimulation, the expression level of CfNOS mRNA in haemocytes increased significantly at 3 h (4.0-, 4.8- and 2.7-fold, respectively, P < 0.01), and reached the peak at 12 h (15.3- and 27.6-fold for LPS and β-glucan respectively, P < 0.01) and 24 h (17.3-fold for PGN, P < 0.01). In addition, TNF-α also induced the expression of CfNOS, which started to increase at 1 h (5.2-fold, P < 0.05) and peaked at 6 h (19.9-fold, P < 0.01). The catalytic activity of the native CfNOS protein was 30.3 ± 0.3 U mgprot-1, and it decreased significantly after the addition of the selective inhibitors of nNOS and iNOS (26.9 ± 0.4 and 29.3 ± 0.1 U mgprot-1, respectively, P < 0.01). Conclusions These results suggested that CfNOS, with identical structure with nNOS and similar enzymatic characteristics to nNOS and iNOS, played the immunological role of iNOS to be involved in the scallop immune defense against PAMPs and TNF-α.

Collaboration


Dive into the Leilei Wang's collaboration.

Top Co-Authors

Avatar

Lingling Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhi Zhou

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Huan Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Limei Qiu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Mengmeng Huang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Mengqiang Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Chuanyan Yang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Feng Yue

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge