Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leili Ran is active.

Publication


Featured researches published by Leili Ran.


Science | 2012

Function and molecular mechanism of acetylation in autophagy regulation

Cong Yi; Meisheng Ma; Leili Ran; Jingxiang Zheng; Jingjing Tong; Jing Zhu; Chengying Ma; Yufen Sun; Shaojin Zhang; Wenzhi Feng; Liyuan Zhu; Yan Le; Xingqi Gong; Xianghua Yan; Bing Hong; Fen-Jun Jiang; Zhiping Xie; Di Miao; Haiteng Deng; Li Yu

Acetylation and Autophagy Autophagy allows cells to digest their own components when necessary to survive stressful conditions. Lin et al. (p. 477) and Yi et al. (p. 474) describe signaling mechanisms in mammalian cells and yeast, respectively, by which autophagy is regulated by protein acetylation. In mammalian cells deprived of serum, the acetyltransferase TIP60 was activated by phosphorylation by the protein kinase GSK3 (glycogen synthase kinase 3). TIP60s target appeared to be a protein kinase central to autophagy regulation, ULK1. This activating pathway was required for autophagy in the absence of serum, but was not needed for autophagy in cells deprived of glucose. In the yeast Saccharomyces cerevisiae starved of nitrogen, another acetylation mechanism was uncovered. Starvation led to activation of the histone acetyltransferase Esa1, which acetylated the protein Atg3, a key component of the autophagy machinery, thus increasing its interaction with another autophagy protein, Atg8. The acetyltransferase TIP60 functions specifically to promote autophagy in cells deprived of growth factors. Protein acetylation emerged as a key regulatory mechanism for many cellular processes. We used genetic analysis of Saccharomyces cerevisiae to identify Esa1 as a histone acetyltransferase required for autophagy. We further identified the autophagy signaling component Atg3 as a substrate for Esa1. Specifically, acetylation of K19 and K48 of Atg3 regulated autophagy by controlling Atg3 and Atg8 interaction and lipidation of Atg8. Starvation induced transient K19-K48 acetylation through spatial and temporal regulation of the localization of acetylase Esa1 and the deacetylase Rpd3 on pre-autophagosomal structures (PASs) and their interaction with Atg3. Attenuation of K19-K48 acetylation was associated with attenuation of autophagy. Increased K19-K48 acetylation after deletion of the deacetylase Rpd3 caused increased autophagy. Thus, protein acetylation contributes to control of autophagy.


Nature Genetics | 2014

PRC2 is recurrently inactivated through EED or SUZ12 loss in malignant peripheral nerve sheath tumors

William R. Lee; Sewit Teckie; Thomas Wiesner; Leili Ran; Carlos N. Prieto Granada; Mingyan Lin; Sinan Zhu; Zhen Cao; Yupu Liang; Andrea Sboner; William D. Tap; Jonathan A. Fletcher; Kety Huberman; Li Xuan Qin; Agnes Viale; Samuel Singer; Deyou Zheng; Michael F. Berger; Yu Chen; Cristina R. Antonescu; Ping Chi

Malignant peripheral nerve sheath tumors (MPNSTs) represent a group of highly aggressive soft-tissue sarcomas that may occur sporadically, in association with neurofibromatosis type I (NF1 associated) or after radiotherapy. Using comprehensive genomic approaches, we identified loss-of-function somatic alterations of the Polycomb repressive complex 2 (PRC2) components (EED or SUZ12) in 92% of sporadic, 70% of NF1-associated and 90% of radiotherapy-associated MPNSTs. MPNSTs with PRC2 loss showed complete loss of trimethylation at lysine 27 of histone H3 (H3K27me3) and aberrant transcriptional activation of multiple PRC2-repressed homeobox master regulators and their regulated developmental pathways. Introduction of the lost PRC2 component in a PRC2-deficient MPNST cell line restored H3K27me3 levels and decreased cell growth. Additionally, we identified frequent somatic alterations of CDKN2A (81% of all MPNSTs) and NF1 (72% of non-NF1-associated MPNSTs), both of which significantly co-occur with PRC2 alterations. The highly recurrent and specific inactivation of PRC2 components, NF1 and CDKN2A highlights their critical and potentially cooperative roles in MPNST pathogenesis.


Science | 2016

Histone H3K36 mutations promote sarcomagenesis through altered histone methylation landscape

Chao Lu; Siddhant U. Jain; Dominik Hoelper; Denise Bechet; Rosalynn C. Molden; Leili Ran; Devan Murphy; Sriram Venneti; Meera Hameed; Bruce R. Pawel; Jay S. Wunder; Brendan C. Dickson; Stefan M. Lundgren; Krupa S. Jani; Nicolas De Jay; Simon Papillon-Cavanagh; Irene L. Andrulis; Sarah L. Sawyer; David Grynspan; Robert E. Turcotte; Javad Nadaf; Somayyeh Fahiminiyah; Tom W. Muir; Jacek Majewski; Craig B. Thompson; Ping Chi; Benjamin A. Garcia; C. David Allis; Nada Jabado; Peter W. Lewis

An oncohistone deranges inhibitory chromatin Missense mutations (that change one amino acid for another) in histone H3 can produce a so-called oncohistone and are found in a number of pediatric cancers. For example, the lysine-36–to-methionine (K36M) mutation is seen in almost all chondroblastomas. Lu et al. show that K36M mutant histones are oncogenic, and they inhibit the normal methylation of this same residue in wild-type H3 histones. The mutant histones also interfere with the normal development of bone-related cells and the deposition of inhibitory chromatin marks. Science, this issue p. 844 The lysine-36–to–methionine mutation in histone H3 is oncogenic and interferes with inhibitory chromatin marks. Several types of pediatric cancers reportedly contain high-frequency missense mutations in histone H3, yet the underlying oncogenic mechanism remains poorly characterized. Here we report that the H3 lysine 36–to–methionine (H3K36M) mutation impairs the differentiation of mesenchymal progenitor cells and generates undifferentiated sarcoma in vivo. H3K36M mutant nucleosomes inhibit the enzymatic activities of several H3K36 methyltransferases. Depleting H3K36 methyltransferases, or expressing an H3K36I mutant that similarly inhibits H3K36 methylation, is sufficient to phenocopy the H3K36M mutation. After the loss of H3K36 methylation, a genome-wide gain in H3K27 methylation leads to a redistribution of polycomb repressive complex 1 and de-repression of its target genes known to block mesenchymal differentiation. Our findings are mirrored in human undifferentiated sarcomas in which novel K36M/I mutations in H3.1 are identified.


Nature | 2015

Alternative transcription initiation leads to expression of a novel ALK isoform in cancer

Thomas Wiesner; William R. Lee; Anna C. Obenauf; Leili Ran; Rajmohan Murali; Qi Fan Zhang; Elissa W.P. Wong; Wenhuo Hu; Sasinya N. Scott; Ronak Shah; Iñigo Landa; Julia Button; Nathalie Lailler; Andrea Sboner; Dong Gao; Devan Murphy; Zhen Cao; Shipra Shukla; Travis J. Hollmann; Lu Wang; Laetitia Borsu; Taha Merghoub; Gary K. Schwartz; Michael A. Postow; Charlotte E. Ariyan; James A. Fagin; Deyou Zheng; Marc Ladanyi; Michael F. Berger; Yu Chen

Activation of oncogenes by mechanisms other than genetic aberrations such as mutations, translocations, or amplifications is largely undefined. Here we report a novel isoform of the anaplastic lymphoma kinase (ALK) that is expressed in ∼11% of melanomas and sporadically in other human cancer types, but not in normal tissues. The novel ALK transcript initiates from a de novo alternative transcription initiation (ATI) site in ALK intron 19, and was termed ALKATI. In ALKATI-expressing tumours, the ATI site is enriched for H3K4me3 and RNA polymerase II, chromatin marks characteristic of active transcription initiation sites. ALKATI is expressed from both ALK alleles, and no recurrent genetic aberrations are found at the ALK locus, indicating that the transcriptional activation is independent of genetic aberrations at the ALK locus. The ALKATI transcript encodes three proteins with molecular weights of 61.1, 60.8 and 58.7 kilodaltons, consisting primarily of the intracellular tyrosine kinase domain. ALKATI stimulates multiple oncogenic signalling pathways, drives growth-factor-independent cell proliferation in vitro, and promotes tumorigenesis in vivo in mouse models. ALK inhibitors can suppress the kinase activity of ALKATI, suggesting that patients with ALKATI-expressing tumours may benefit from ALK inhibitors. Our findings suggest a novel mechanism of oncogene activation in cancer through de novo alternative transcription initiation.


Cancer Discovery | 2015

Combined Inhibition of MAP Kinase and KIT Signaling Synergistically Destabilizes ETV1 and Suppresses GIST Tumor Growth

Leili Ran; Inna Sirota; Zhen Cao; Devan Murphy; Yuedan Chen; Shipra Shukla; Yuanyuan Xie; Kaufmann Mc; Dong Gao; Zhu S; Rossi F; John Wongvipat; Taguchi T; William D. Tap; Ingo K. Mellinghoff; Peter Besmer; Cristina R. Antonescu; Ping Chi

UNLABELLED Gastrointestinal stromal tumor (GIST), originating from the interstitial cells of Cajal (ICC), is characterized by frequent activating mutations of the KIT receptor tyrosine kinase. Despite the clinical success of imatinib, which targets KIT, most patients with advanced GIST develop resistance and eventually die of the disease. The ETS family transcription factor ETV1 is a master regulator of the ICC lineage. Using mouse models of Kit activation and Etv1 ablation, we demonstrate that ETV1 is required for GIST initiation and proliferation in vivo, validating it as a therapeutic target. We further uncover a positive feedback circuit where MAP kinase activation downstream of KIT stabilizes the ETV1 protein, and ETV1 positively regulates KIT expression. Combined targeting of ETV1 stability by imatinib and MEK162 resulted in increased growth suppression in vitro and complete tumor regression in vivo. The combination strategy to target ETV1 may provide an effective therapeutic strategy in GIST clinical management. SIGNIFICANCE ETV1 is a lineage-specific oncogenic transcription factor required for the growth and survival of GIST. We describe a novel strategy of targeting ETV1 protein stability by the combination of MEK and KIT inhibitors that synergistically suppress tumor growth. This strategy has the potential to change first-line therapy in GIST clinical management.


Cell Death and Disease | 2017

Inhibition of human mitochondrial peptide deformylase causes apoptosis in c-myc-overexpressing hematopoietic cancers

A Sheth; S Escobar-Alvarez; J Gardner; Leili Ran; M L Heaney; D A Scheinberg

Inhibition of human mitochondrial peptide deformylase (HsPDF) depolarizes the mitochondrial membrane, reduces mitochondrial protein translation and causes apoptosis in Burkitt’s lymphoma. We showed that HsPDF mRNA and protein levels were overexpressed in cancer cells and primary acute myeloid leukemia samples. Myc regulates mitochondria and metabolism; we also demonstrated c-myc regulated the expression of HsPDF, likely indirectly. Inhibition of HsPDF by actinonin blocked mitochondrial protein translation and caused apoptotic death of myc-positive Burkitt’s lymphoma, but not myc-negative B cells. Inhibition of mitochondrial translation by chloramphenicol or tetracycline, structurally different inhibitors of the mitochondrial ribosome, which is upstream of deformylase activity, followed by treatment with actinonin, resulted in reversal of the biochemical events and abrogation of the apoptosis induced by actinonin. This reversal was specific to inhibitors of HsPDF. Inhibition of HsPDF resulted in a mitochondrial unfolded protein response (increased transcription factors CHOP and CEB/P and the mitochondrial protease Lon), which may be a mechanism mediating cell death. Therefore, HsPDF may be a therapeutic target for these hematopoietic cancers, acting via a new mechanism.


Cancer Cell | 2017

Aberrant Activation of a Gastrointestinal Transcriptional Circuit in Prostate Cancer Mediates Castration Resistance

Shipra Shukla; Joanna Cyrta; Devan Murphy; Edward Walczak; Leili Ran; Praveen Agrawal; Yuanyuan Xie; Yuedan Chen; Shangqian Wang; Yu Zhan; Dan Li; Elissa W.P. Wong; Andrea Sboner; Himisha Beltran; Juan Miguel Mosquera; Jessica Sher; Zhen Cao; John Wongvipat; Richard Koche; Anuradha Gopalan; Deyou Zheng; Mark A. Rubin; Howard I. Scher; Ping Chi; Yu Chen

Prostate cancer exhibits a lineage-specific dependence on androgen signaling. Castration resistance involves reactivation of androgen signaling or activation of alternative lineage programs to bypass androgen requirement. We describe an aberrant gastrointestinal-lineage transcriptome expressed in ∼5% of primary prostate cancer that is characterized by abbreviated response to androgen-deprivation therapy and in ∼30% of castration-resistant prostate cancer. This program is governed by a transcriptional circuit consisting of HNF4G and HNF1A. Cistrome and chromatin analyses revealed that HNF4G is a pioneer factor that generates and maintains enhancer landscape at gastrointestinal-lineage genes, independent of androgen-receptor signaling. In HNF4G/HNF1A-double-negative prostate cancer, exogenous expression of HNF4G at physiologic levels recapitulates the gastrointestinal transcriptome, chromatin landscape, and leads to relative castration resistance.


Cancer Discovery | 2017

FOXF1 Defines the Core-Regulatory Circuitry in Gastrointestinal Stromal Tumor

Leili Ran; Yuedan Chen; Jessica Sher; Elissa W.P. Wong; Devan Murphy; Jenny Zhang; Dan Li; Kemal Deniz; Inna Sirota; Zhen Cao; Shangqian Wang; Youxin Guan; Shipra Shukla; Katie Yang Li; Alan Chramiec; Yuanyuan Xie; Deyou Zheng; Richard Koche; Cristina R. Antonescu; Yu Chen; Ping Chi

The cellular context that integrates upstream signaling and downstream nuclear response dictates the oncogenic behavior and shapes treatment responses in distinct cancer types. Here, we uncover that in gastrointestinal stromal tumor (GIST), the forkhead family member FOXF1 directly controls the transcription of two master regulators, KIT and ETV1, both required for GIST precursor-interstitial cells of Cajal lineage specification and GIST tumorigenesis. Further, FOXF1 colocalizes with ETV1 at enhancers and functions as a pioneer factor that regulates the ETV1-dependent GIST lineage-specific transcriptome through modulation of the local chromatin context, including chromatin accessibility, enhancer maintenance, and ETV1 binding. Functionally, FOXF1 is required for human GIST cell growth in vitro and murine GIST tumor growth and maintenance in vivo The simultaneous control of the upstream signaling and nuclear response sets up a unique regulatory paradigm and highlights the critical role of FOXF1 in enforcing the GIST cellular context for highly lineage-restricted clinical behavior and treatment response.Significance: We uncover that FOXF1 defines the core-regulatory circuitry in GIST through both direct transcriptional regulation and pioneer factor function. The unique and simultaneous control of signaling and transcriptional circuitry by FOXF1 sets up an enforced transcriptional addiction to FOXF1 in GIST, which can be exploited diagnostically and therapeutically. Cancer Discov; 8(2); 234-51. ©2017 AACR.See related commentary by Lee and Duensing, p. 146This article is highlighted in the In This Issue feature, p. 127.


Cell Reports | 2018

GNA11 Q209L Mouse Model Reveals RasGRP3 as an Essential Signaling Node in Uveal Melanoma

Amanda R. Moore; Leili Ran; Youxin Guan; Jessica Sher; Tyler Hitchman; Jenny Zhang; Catalina Hwang; Edward G. Walzak; Alexander N. Shoushtari; Sebastien Monette; Rajmohan Murali; Thomas Wiesner; Klaus G. Griewank; Ping Chi; Yu Chen

SUMMARY Uveal melanoma (UM) is characterized by mutually exclusive activating mutations in GNAQ, GNA11, CYSLTR2, and PLCB4, four genes in a linear pathway to activation of PLCβ in almost all tumors and loss of BAP1 in the aggressive subset. We generated mice with melanocyte-specific expression of GNA11Q209L with and without homozygous Bap1 loss. The GNA11Q209L mice recapitulated human Gq-associated melanomas, and they developed pigmented neoplastic lesions from melanocytes of the skin and non-cutaneous organs, including the eye and leptomeninges, as well as at atypical sites, including the lymph nodes and lungs. The addition of Bap1 loss increased tumor proliferation and cutaneous melanoma size. Integrative transcriptome analysis of human and murine melanomas identified RasGRP3 to be specifically expressed in GNAQ/GNA11-driven melanomas. In human UM cell lines and murine models, RasGRP3 is specifically required for GNAQ/GNA11-driven Ras activation and tumorigenesis. This implicates RasGRP3 as a critical node and a potential target in UM.


Cancer Research | 2017

ETV1-positive cells give rise to BRAFV600E mutant gastrointestinal stromal tumors

Leili Ran; Devan Murphy; Jessica Sher; Zhen Cao; Shangqian Wang; Edward Walczak; Youxin Guan; Yuanyuan Xie; Shipra Shukla; Yu Zhan; Cristina R. Antonescu; Yu Chen; Ping Chi

Gastrointestinal stromal tumor (GIST) is the most common subtype of sarcoma. Despite clinical advances in the treatment of KIT/PDGFRA-mutant GIST, similar progress against KIT/PDGFRA wild-type GIST, including mutant BRAF-driven tumors, has been limited by a lack of model systems. ETV1 is a master regulator in the intestinal cells of Cajal (ICC), thought to be the cells of origin of GIST. Here, we present a model in which the ETV1 promoter is used to specifically and inducibly drive Cre recombinase in ICC as a strategy to study GIST pathogenesis. Using a conditional allele for BrafV600E , a mutation observed in clinical cases of GIST, we observed that BrafV600E activation was sufficient to drive ICC hyperplasia but not GIST tumorigenesis. In contrast, combining BrafV600E activation with Trp53 loss was sufficient to drive both ICC hyperplasia and formation of multifocal GIST-like tumors in the mouse gastrointestinal tract with 100% penetrance. This mouse model of sporadic GIST model was amenable to therapeutic intervention, and it recapitulated clinical responses to RAF inhibition seen in human GIST. Our work offers a useful in vivo model of human sporadic forms of BRAF-mutant GIST to help unravel its pathogenesis and therapeutic response to novel experimental agents. Cancer Res; 77(14); 3758-65. ©2017 AACR.

Collaboration


Dive into the Leili Ran's collaboration.

Top Co-Authors

Avatar

Zhen Cao

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Ping Chi

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Devan Murphy

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Shipra Shukla

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Yu Chen

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Cristina R. Antonescu

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Yuanyuan Xie

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Inna Sirota

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

John Wongvipat

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Dong Gao

Memorial Sloan Kettering Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge