Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leimeng Zhuang is active.

Publication


Featured researches published by Leimeng Zhuang.


Journal of Lightwave Technology | 2010

Novel Ring Resonator-Based Integrated Photonic Beamformer for Broadband Phased Array Receive Antennas—Part I: Design and Performance Analysis

Arjan Meijerink; C.G.H. Roeloffzen; R. Meijerink; Leimeng Zhuang; David Marpaung; M.J. Bentum; Maurizio Burla; Jaco Verpoorte; P. Jorna; A. Hulzinga; W.C. van Etten

A novel optical beamformer concept is introduced that can be used for seamless control of the reception angle in broadband wireless receivers employing a large phased array antenna (PAA). The core of this beamformer is an optical beamforming network (OBFN), using ring resonator-based broadband delays, and coherent optical combining. The electro-optical conversion is performed by means of single-sideband suppressed carrier modulation, employing a common laser, Mach-Zehnder modulators, and a common optical sideband filter after the OBFN. The unmodulated laser signal is then re-injected in order to perform balanced coherent optical detection, for the opto-electrical conversion. This scheme minimizes the requirements on the complexity of the OBFN, and has potential for compact realization by means of full integration on chip. The impact of the optical beamformer concept on the performance of the full receiver system is analyzed, by modeling the combination of the PAA and the beamformer as an equivalent two-port RF system. The results are illustrated by a numerical example of a PAA receiver for satellite TV reception, showing that - when properly designed - the beamformer hardly affects the sensitivity of the receiver.


Optics Express | 2011

On-chip CMOS compatible reconfigurable optical delay line with seperate carrier tuning for microwave photonic signal processing.

Maurizio Burla; David Marpaung; Leimeng Zhuang; C.G.H. Roeloffzen; Muhannad Rezaul H. Khan; Arne Leinse; Marcel Hoekman; Rene Heideman

We report, for the first time, an integrated photonic signal processor consisting of a reconfigurable optical delay line (ODL) with a separate carrier tuning (SCT) unit and an optical sideband filter on a single CMOS compatible photonic chip. The processing functionalities are carried out with optical ring resonators as building blocks. We show that the integrated approach together with the use of SCT technique allows the implementation of a wideband, fully-tunable ODL with reduced complexity. To highlight the functionalities of the processor, we demonstrate a reconfigurable microwave photonic filter where the ODL has been configured in a bandwidth over 1 GHz.


Optics Express | 2011

Low-loss, high-index-contrast Si3N4/SiO2 optical waveguides for optical delay lines in microwave photonics signal processing

Leimeng Zhuang; David Marpaung; Maurizio Burla; Willem P. Beeker; Arne Leinse; C.G.H. Roeloffzen

We report the design and characterization of Si₃N₄/SiO₂ optical waveguides which are specifically developed for optical delay lines in microwave photonics (MWP) signal processing applications. The waveguide structure consists of a stack of two Si₃N₄ stripes and SiO₂ as an intermediate layer. Characterization of the waveguide propagation loss was performed in race track-shaped optical ring resonators (ORRs) with a free-spectral range of 20 GHz and a bending radius varied from 50 μm to 125 μm. A waveguide propagation loss as low as 0.095 dB/cm was measured in the ORRs with bend radii ≥ 70 μm. Using the waveguide technology two types of RF-modulated optical sideband filters with high sideband suppression and small transition band consisting of an Mach-Zehnder interferometer and ORRs are also demonstrated. These results demonstrate the potential of the waveguide technology to be applied to construct compact on-chip MWP signal processors.


Journal of Lightwave Technology | 2010

Novel Ring Resonator-Based Integrated Photonic Beamformer for Broadband Phased Array Receive Antennas—Part II: Experimental Prototype

Leimeng Zhuang; C.G.H. Roeloffzen; Arjan Meijerink; Maurizio Burla; David Marpaung; Arne Leinse; Marcel Hoekman; Rene Heideman; van Wim Etten

An experimental prototype is presented that illustrates the implementation aspects and feasibility of the novel ring resonator-based optical beamformer concept that has been developed and analyzed in Part I of this paper . This concept can be used for seamless control of the reception angle in broadband wireless receivers employing a large phased array antenna (PAA). The design, fabrication, and characterization of a dedicated chip are described, in which an 8 × 1 optical beamforming network, an optical sideband filter for single-sideband suppressed carrier modulation, and a carrier re-insertion coupler for balanced optical detection are integrated. The chip was designed for satellite television reception using a broadband PAA, and was realized in a low-loss, CMOS-compatible optical waveguide technology. Tuning is performed thermo-optically, with a switching time of 1 ms. Group delay response and power response measurements show the correct operation of the OBFN and OSBF, respectively. Measurements on a complete beamformer prototype (including the electro-optical and opto-electrical conversions) demonstrate an optical sideband suppression of 25 dB, RF-to-RF delay generation up to 0.63 ns with a phase accuracy better than ¿/10 radians, and coherent combining of four RF input signals, all in a frequency range of 1-2 GHz.


IEEE Photonics Technology Letters | 2007

Single-Chip Ring Resonator-Based 1

Leimeng Zhuang; C.G.H. Roeloffzen; Rene Heideman; A. Borreman; Arjan Meijerink; W.C. van Etten

Optical ring resonators (ORRs) are good candidates to provide continuously tunable delay in optical beam forming networks (OBFNs) for phased array antenna systems. Delay and splitting/combining elements can be integrated on a single optical chip to form an OBFN. A state-of-the-art ring resonator-based 1times 8 OBFN chip has been fabricated in complementary metal-oxide-semiconductor-compatible waveguide technology. A binary tree topology is used for the network such that a different number of ORRs is cascaded for delay generation at each output. In this letter, the principle of operation is explained and demonstrated by presenting some measurement results on the 1times 8 OBFN chip.


arXiv: Optics | 2015

\times

Leimeng Zhuang; C.G.H. Roeloffzen; Marcel Hoekman; Klaus J. Boller; Arthur J. Lowery

Integrated microwave photonics, an emerging technology combining radio frequency (RF) engineering and integrated photonics, has great potential to be adopted for wideband analog processing applications. However, it has been a challenge to provide photonic integrated circuits with equal levels of function flexibility as compared with their electronic counterparts. Here, we introduce a disruptive approach to tackle this need, which is analogous to an electronic field-programmable gate array. We use a grid of tunable Mach–Zehnder couplers interconnected in a two-dimensional mesh network, each working as a photonic processing unit. Such a device is able to be programmed into many different circuit topologies and thereby provide a diversity of functions. This paper provides, to the best of our knowledge, the first ever demonstration of this concept and shows that a programmable chip with a free spectral range of 14 GHz enables RF filters featuring continuous, over-two-octave frequency coverage, i.e., 1.6–6 GHz, and variable passband shaping ranging from a 55 dB extinction notch filter to a 1.6 GHz bandwidth flat-top filter.


Journal of Lightwave Technology | 2014

8 Optical Beam Forming Network in CMOS-Compatible Waveguide Technology

Maurizio Burla; David Marpaung; Leimeng Zhuang; M.R.H. Khan; Arne Leinse; Willem P. Beeker; Marcel Hoekman; Rene Heideman; C.G.H. Roeloffzen

A novel, hardware-compressive architecture for broadband and continuously tunable integrated optical true-time-delay beamformers for phased array antennas is proposed and experimentally demonstrated. The novel idea consists in employing the frequency-periodic response of optical ring resonator (ORR) filters in conjunction with on-chip wavelength division multiplexing (WDM), in order to create multiple signal paths on an individual beamformer channel. This novel idea dramatically reduces the network complexity and, in turn, its footprint on the wafer. This allows the integration of an unprecedented number of delay channels on a single chip, ultimately overcoming the main limitation of integrated optical beamformers, that is, the difficulty to feed antenna arrays with many elements using a single integrated chip. A novel beamformer has been realized based on this technique, using the ultra-low-loss TriPleX waveguide platform with CMOS-compatible fabrication equipment, and its functionality is demonstrated over an instantaneous bandwidth from 2 to 10 GHz. This result, at the best of our knowledge, represents at the same time the record instantaneous bandwidth (8 GHz) for an optical beamformer based on ORR, and the first demonstration of an integrated beamformer where the periodic response of ORRs is exploited to process signals from different antenna elements, simultaneously, using a single delay line.


Optics Express | 2012

Programmable photonic signal processor chip for radiofrequency applications

Leimeng Zhuang; M.R.H. Khan; Willem P. Beeker; Arne Leinse; Rene Heideman; C.G.H. Roeloffzen

We propose and demonstrate a novel wideband microwave photonic fractional Hilbert transformer implemented using a ring resonator-based optical all-pass filter. The full programmability of the ring resonator allows variable and arbitrary fractional order of the Hilbert transformer. The performance analysis in both frequency and time domain validates that the proposed implementation provides a good approximation to an ideal fractional Hilbert transformer. This is also experimentally verified by an electrical S21 response characterization performed on a waveguide realization of a ring resonator. The waveguide-based structure allows the proposed Hilbert transformer to be integrated together with other building blocks on a photonic integrated circuit to create various system-level functionalities for on-chip microwave photonic signal processors. As an example, a circuit consisting of a splitter and a ring resonator has been realized which can perform on-chip phase control of microwave signals generated by means of optical heterodyning, and simultaneous generation of in-phase and quadrature microwave signals for a wide frequency range. For these functionalities, this simple and on-chip solution is considered to be practical, particularly when operating together with a dual-frequency laser. To our best knowledge, this is the first-time on-chip demonstration where ring resonators are employed to perform phase control functionalities for optical generation of microwave signals by means of optical heterodyning.


Proceedings of SPIE, the International Society for Optical Engineering | 2009

Multiwavelength-Integrated Optical Beamformer Based on Wavelength Division Multiplexing for 2-D Phased Array Antennas

Rene Heideman; Arne Leinse; Willem Hoving; R. Dekker; Douwe Geuzebroek; E.J. Klein; Remco Stoffer; C.G.H. Roeloffzen; Leimeng Zhuang; Arjan Meijerink

We present a new class of low-loss integrated optical waveguide structures as CMOS-compatible industrial standard for photonic integration on silicon or glass. A TriPleXTM waveguide is basically formed by a -preferably rectangular- silicon nitride (Si3N4) shell filled with and encapsulated by silicon dioxide (SiO2). The constituent materials are low-cost stoichiometric LPVCD end products which are very stable in time. Modal characteristics, birefringence, footprint size and insertion loss are controlled by design of the geometry. Several examples of new applications will be presented to demonstrate its high potential for large-scale integrated optical circuits for telecommunications, sensing and visible light applications.


symposium on communications and vehicular technology in the benelux | 2006

Novel microwave photonic fractional hilbert transformer using a ring resonator-based optical all-pass filter

Arjan Meijerink; C.G.H. Roeloffzen; Leimeng Zhuang; David Marpaung; Rene Heideman; A. Borreman; W.C. van Etten

A novel beam steering mechanism for a phased array antenna receiver system is introduced. The core of the system is a ring resonator-based integrated optical beam forming network chip. Its principles are explained and demonstrated by presenting some measurement results. The system architecture around the chip is based on a combination of frequency down conversion, filter-based optical single sideband modulation and balanced coherent detection. It is proven that such an architecture has significant advantages with respect to a straightforward architecture using double sideband modulation and direct detection, namely relaxed bandwidth requirements on the optical modulators and detectors, reduced complexity and optical losses of the beam forming chip, and enhanced dynamic range

Collaboration


Dive into the Leimeng Zhuang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Marpaung

Centre for Ultrahigh Bandwidth Devices for Optical Systems

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge