Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leisa K. Townsley is active.

Publication


Featured researches published by Leisa K. Townsley.


The Astrophysical Journal | 2001

The Chandra Deep Survey of the Hubble Deep Field-North Area. II. Results from the Caltech Faint Field Galaxy Redshift Survey Area*

Ann Elizabeth Hornschemeier; W. N. Brandt; Gordon Garmire; Donald P. Schneider; Amy J. Barger; Patrick S. Broos; Lennox L. Cowie; Leisa K. Townsley; Marshall W. Bautz; David N. Burrows; G. Chartas; E. D. Feigelson; Richard E. Griffiths; David H. Lumb; John A. Nousek; Larry Ramsey; Wallace L. W. Sargent

A deep X-ray survey of the Hubble Deep Field-North (HDF-N) and its environs is performed using data collected by the Advanced CCD Imaging Spectrometer (ACIS) on board the Chandra X-Ray Observatory. Currently a 221.9 ks exposure is available, the deepest ever presented, and here we give results on X-ray sources located in the 86 × 87 area covered by the Caltech Faint Field Galaxy Redshift Survey (the Caltech area). This area has (1) deep photometric coverage in several optical and near-infrared bands; (2) extensive coverage at radio, submillimeter, and mid-infrared wavelengths; and (3) some of the deepest and most complete spectroscopic coverage ever obtained. It is also where the X-ray data have the greatest sensitivity; the minimum detectable fluxes in the 0.5-2 keV (soft) and 2-8 keV (hard) bands are ≈1.3 × 10-16 and ≈6.5 × 10-16 ergs cm-2 s-1, respectively. More than ≈80% of the extragalactic X-ray background in the hard band is resolved. The 82 Chandra sources detected in the Caltech area are correlated with more than 25 multiwavelength source catalogs, and the results of these correlations as well as spectroscopic follow-up results obtained with the Keck and Hobby-Eberly Telescopes are presented. All but nine of the Chandra sources are detected optically with R 26.5. Redshifts are available for 39% of the Chandra sources, including 96% of the sources with R 5.0) objects. A total of 16 of the 67 1.4 GHz μJy sources in the Caltech area are detected in the X-ray band, and the detection rates for starburst-type and AGN-candidate μJy sources are comparable. Only two of the 17 red, optically faint (I > 25) μJy sources are detected in X-rays. While many of the starburst-type μJy sources appear to contain obscured active galactic nuclei (AGNs), the Chandra data are consistent with the majority of the μJy radio sources being powered by star formation. A total of 11 of the ≈100 ISO mid-infrared sources found in and near the HDF-N are detected in X-rays. In the HDF-N itself, where both the infrared coverage and the X-ray coverage are deepest, it is notable that six of the eight Chandra sources are detected by ISO; most of these are known to be AGNs where the X-ray and infrared detections reveal both the direct and indirect accretion power being generated. The high X-ray-to-infrared matching rate bodes well for future sensitive infrared observations of faint X-ray sources. Four of the 33 very red objects that have been identified in the Caltech area are detected in X-rays; these four are among our hardest Chandra sources, and we argue that they contain moderately luminous obscured AGNs. Overall, however, the small Chandra detection fraction suggests a relatively small AGN content in the optically selected very red object population. A stacking analysis of the very red objects not detected individually by Chandra yields a soft-band detection with an average soft-band X-ray flux of ≈1.9 × 10-17 ergs cm-2 s-1; the observed emission may be associated with the hot interstellar media of moderate-redshift elliptical galaxies. Constraints on AGN candidates, extended X-ray sources, and Galactic objects in the Caltech area are also presented.


Astrophysical Journal Supplement Series | 2005

Chandra Orion Ultradeep Project: Observations and Source Lists

Konstantin V. Getman; E. Flaccomio; Patrick S. Broos; N. Grosso; Masahiro Tsujimoto; Leisa K. Townsley; Gordon Garmire; Joel H. Kastner; Jingqiang Li; Frank Harnden; Scott J. Wolk; Stephen S. Murray; Charles J. Lada; August Albert Muench; Mark J. McCaughrean; Gwendolyn Meeus; F. Damiani; G. Micela; S. Sciortino; John Bally; Lynne A. Hillenbrand; William Herbst; Thomas Preibisch; Eric D. Feigelson

We present a description of the data reduction methods and the derived catalog of more than 1600 X-ray point sources from the exceptionally deep 2003 January Chandra X-Ray Observatory (Chandra) observation of the Orion Nebula Cluster and embedded populations around OMC-1. The observation was obtained with Chandras Advanced CCD Imaging Spectrometer (ACIS) and has been nicknamed the Chandra Orion Ultradeep Project (COUP). With an 838 ks exposure made over a continuous period of 13.2 days, the COUP observation provides the most uniform and comprehensive data set on the X-ray emission of normal stars ever obtained in the history of X-ray astronomy.


The Astronomical Journal | 2001

The Chandra Deep Field North Survey. V. 1 Ms Source Catalogs

W. N. Brandt; D. M. Alexander; Ann Elizabeth Hornschemeier; Gordon Garmire; Donald P. Schneider; Amy J. Barger; F. E. Bauer; Patrick S. Broos; L. L. Cowie; Leisa K. Townsley; David N. Burrows; G. Chartas; E. D. Feigelson; Richard E. Griffiths; John A. Nousek; Wallace L. W. Sargent

An extremely deep X-ray survey (≈1 Ms) of the Hubble Deep Field North (HDF-N) and its environs (≈450 arcmin2) has been performed with the Advanced CCD Imaging Spectrometer on board the Chandra X-Ray Observatory. This is one of the two deepest X-ray surveys ever performed; for point sources near the aim point, it reaches 0.5–2.0 and 2–8 keV flux limits of ≈3 × 10-17 and ≈2 × 10-16 ergs cm-2 s-1, respectively. Here we provide source catalogs, along with details of the observations, data reduction, and technical analysis. Observing conditions, such as background, were excellent for almost all of the exposure. We have detected 370 distinct point sources: 360 in the 0.5–8.0 keV band, 325 in the 0.5–2.0 keV band, 265 in the 2–8 keV band, and 145 in the 4–8 keV band. Two new Chandra sources in the HDF-N itself are reported and discussed. Source positions are accurate to within 06–17 (at ≈90% confidence), depending mainly on the off-axis angle. We also detect two highly significant extended X-ray sources and several other likely extended X-ray sources. We present basic number count results for sources located near the center of the field. Source densities of 7100 deg-2 (at 4.2 × 10-17 ergs cm-2 s-1) and 4200 deg-2 (at 3.8 × 10-16 ergs cm-2 s-1) are observed in the soft and hard bands, respectively.


The Astrophysical Journal | 2010

INNOVATIONS IN THE ANALYSIS OF CHANDRA-ACIS OBSERVATIONS

Patrick S. Broos; Leisa K. Townsley; Eric D. Feigelson; Konstantin V. Getman; F. E. Bauer; Gordon Garmire

As members of the instrument team for the Advanced CCD Imaging Spectrometer (ACIS) on NASAs Chandra X-ray Observatory and as Chandra General Observers, we have developed a wide variety of data analysis methods that we believe are useful to the Chandra community, and have constructed a significant body of publicly available software (the ACIS Extract package) addressing important ACIS data and science analysis tasks. This paper seeks to describe these data analysis methods for two purposes: to document the data analysis work performed in our own science projects and to help other ACIS observers judge whether these methods may be useful in their own projects (regardless of what tools and procedures they choose to implement those methods). The ACIS data analysis recommendations we offer here address much of the workflow in a typical ACIS project, including data preparation, point source detection via both wavelet decomposition and image reconstruction, masking point sources, identification of diffuse structures, event extraction for both point and diffuse sources, merging extractions from multiple observations, nonparametric broadband photometry, analysis of low-count spectra, and automation of these tasks. Many of the innovations presented here arise from several, often interwoven, complications that are found in many Chandra projects: large numbers of point sources (hundreds to several thousand), faint point sources, misaligned multiple observations of an astronomical field, point source crowding, and scientifically relevant diffuse emission.


The Astrophysical Journal | 2001

Detection of Nuclear X-Ray Sources in Nearby Galaxies with Chandra

Luis C. Ho; Eric D. Feigelson; Leisa K. Townsley; Rita M. Sambruna; Gordon Garmire; W. N. Brandt; Alexei V. Filippenko; Richard E. Griffiths; Andrew F. Ptak; Wallace L. W. Sargent

We report preliminary results from an arcsecond-resolution X-ray survey of nearby galaxies using the Advanced CCD Imaging Spectrometer on board the Chandra X-Ray Observatory. The total sample consists of 41 low-luminosity active galactic nuclei (AGNs), including Seyfert galaxies, LINERs, and LINER/H II transition objects. In the initial subsample of 24 objects observed thus far, we detect in ~62% of the objects a compact, pointlike source astrometrically coincident with either the optical or radio position of the nucleus. The high detection rate strongly suggests that the majority of the objects do contain weakly active, AGN-like cores, presumably powered by central massive black holes. The 2-10 keV luminosities of the nuclear sources range from less than 1038 to 1041 ergs s-1, with a median value of 2 × 1038 ergs s-1. Our detection limit corresponds to LX(2-10 keV) ≈ 8 × 1037 ergs s-1 for the typical sample distance of 12 Mpc; this limit is 2 orders of magnitude fainter than the weakest sources of this kind previously studied using ASCA or BeppoSAX. The new data extend toward lower luminosities the known linear correlation between hard X-ray and Hα luminosity for broad-line AGNs. Many narrow-line objects do contain X-ray cores, consistent with either weak AGNs or X-ray binary systems, but they have X-ray luminosities a factor of 10 below the LX-LHα relation of the broad-line sources. Their distributions of photon energies show no indication of exceptionally high absorption. The optical line emission in these nuclei is likely powered, at least in part, by stellar processes.


The Astrophysical Journal | 2003

10 MK Gas in M17 and the Rosette Nebula: X-Ray Flows in Galactic H II Regions

Leisa K. Townsley; Eric D. Feigelson; Thierry Montmerle; Patrick S. Broos; You-Hua Chu; Gordon Garmire

We present the first high spatial resolution X-ray images of two high-mass star forming regions, the Omega Nebula (M17) and the Rosette Nebula (NGC 2237-2246), obtained with the Chandra X-Ray Observatory Advanced CCD Imaging Spectrometer instrument. The massive clusters powering these H II regions are resolved at the arcsecond level into more than 900 (M17) and 300 (Rosette) stellar sources similar to those seen in closer young stellar clusters. However, we also detect soft diffuse X-ray emission on parsec scales that is spatially and spectrally distinct from the point-source population. The diffuse emission has luminosity LX 3.4 × 1033 ergs s-1 in M17 with plasma energy components at kT 0.13 and 0.6 keV (1.5 and 7 MK), while in Rosette it has LX 6 × 1032 ergs s-1 with plasma energy components at kT 0.06 and 0.8 keV (0.7 and 9 MK). This extended emission most likely arises from the fast O star winds thermalized either by wind-wind collisions or by a termination shock against the surrounding media. We establish that only a small portion of the wind energy and mass appears in the observed diffuse X-ray plasma; in these blister H II regions, we suspect that most of it flows without cooling into the low-density interstellar medium. These data provide compelling observational evidence that strong wind shocks are present in H II regions.


Astrophysical Journal Supplement Series | 2005

Global X-Ray Properties of the Orion Nebula Region

Eric D. Feigelson; Konstantin V. Getman; Leisa K. Townsley; Gordon Garmire; Thomas Preibisch; N. Grosso; Thierry Montmerle; Augustus Muench; Mark J. McCaughrean

Based on the Chandra Orion Ultradeep Project (COUP) observation, we establish the global X-ray properties of the stellar population associated with the Orion Nebula. Three components contribute roughly equally to the integrated COUP luminosity in the hard (2-8 keV) X-ray band: several OB stars, 822 lightly obscured cool stars in the Orion Nebula Cluster (ONC), and 559 heavily obscured stars. ONC stars 0.5-2?pc from the center show a spatial asymmetry consistent with violent relaxation in the stellar dynamics. The obscured COUP sources concentrate around both OMC-1 molecular cores; these small-scale structures indicate ages t 0.1 Myr. The X-ray luminosity function (XLF) of the lightly obscured sample is roughly lognormal in shape. The obscured population is deficient in lower luminosity stars, perhaps due to localized circumstellar material. Mass-stratified XLFs show that one-third of the Orion Nebula region hard-band emission is produced by the bright O6 star ?1 Ori C and half is produced by lower mass pre-main-sequence stars with masses 0.3 M? < M < 3 M?. Very low mass stars contribute little to the cluster X-ray emission. Using the hard band emission, we show that young stellar clusters like the ONC can be readily detected and resolved with Chandra across the Galactic disk, even in the presence of heavy obscuration. The Orion Nebula sample is a valuable template for studies of distant clusters. For example, the peak of the XLF shape can serve as a standard candle for a new distance measure to distant young stellar clusters, and the presence of a neon emission line complex around 1 keV can serve as a diagnostic for young stars.


The Astrophysical Journal | 2002

Chandra Study of Young Stellar Objects in the NGC 1333 Star-forming Cloud

Konstantin V. Getman; Eric D. Feigelson; Leisa K. Townsley; John Bally; Charles J. Lada; Bo Reipurth

NGC 1333, a highly active star formation region within the Perseus molecular cloud complex, has been observed with the ACIS-I detector on board the Chandra X-Ray Observatory. In our image with a sensitivity limit of ~1028 ergs s-1, we detect 127 X-ray sources, most with subarcsecond positional accuracy. While 32 of these sources appear to be foreground stars and extragalactic background, 95 X-ray sources are identified with known cluster members. The X-ray luminosity function of the discovered young stellar object (YSO) population spans a range of log LX 28.0-31.5 ergs s-1 in the 0.5-8 keV band, and absorption ranges from log NH 20 to 23 cm-2. Most of the sources have plasma energies between 0.6 and 3 keV, but a few sources show higher energies up to ~7 keV. Comparison with K-band source counts indicates that we detect all of the known cluster members with K 12. K 11, the peak of the K-band luminosity function, corresponds to 0.2-0.4 M☉ stars for a cluster age of ~1 Myr. We detect seven of the 20 known YSOs in NGC 1333 producing jets or molecular outflows as well as one deeply embedded object without outflows. No evident difference in X-ray emission of young stars with and without outflows is found. Based on the complete subsample of T Tauri stars, we also find no difference in X-ray properties and X-ray production mechanism of stars with and without K-band excess disks. Several other results are obtained. We suggest that the X-ray emission from two late B stars that illuminate the reflection nebula originates from unresolved late-type companions. Two T Tauri stars are discovered in the ACIS images as previously unknown components of visual binaries. A good correlation LX J is seen, which confirms the well-known relation LX Lbol found in many star-forming regions. Based on spectral analysis for the X-ray counterpart of SVS 16, we establish that the column density NH is much lower than that expected from near-IR photometry so that its X-ray luminosity, log LX 30.6 ergs s-1, is not unusually high.


The Astronomical Journal | 2001

The Chandra Deep Survey of the Hubble Deep Field North Area. IV. An Ultradeep Image of the HDF-N

W. N. Brandt; Ann Elizabeth Hornschemeier; D. M. Alexander; Gordon Garmire; Donald P. Schneider; Patrick S. Broos; Leisa K. Townsley; Marshall W. Bautz; E. D. Feigelson; Richard E. Griffiths

We present results from a 479.7 ks Chandra exposure of the Hubble Deep Field North (HDF-N) and its immediate vicinity. In this X-ray image, the deepest ever reported with a 0.5¨2.0 keV —ux limit of B4.9 ] 10~17 ergs cm~2 s~1, four new HDF-N X-ray sources are detected, bringing the total number of such sources to 12. The new sources include two optically bright (R \ 18.3¨18.8) low-redshift (z \ 0.15) galaxies, a FanaroU-Riley I radio galaxy, and an edge-on spiral galaxy hosting either a powerful starburst and/or a low-luminosity active galactic nucleus (AGN). Notably, X-ray emission has now been detected from all luminous galaxies with z \ 0.15 known in the HDF-N. We have also (M V \ [18) detected the remarkable microjansky radio source VLA J123642.09]621331.4, which is located just outside the HDF-N and has a likely redshift of z \ 4.424. The observed X-ray emission supports the


Astrophysical Journal Supplement Series | 2007

The Young Stellar Population in M17 Revealed by Chandra

Patrick S. Broos; Eric D. Feigelson; Leisa K. Townsley; Konstantin V. Getman; Junfeng Wang; Gordon Garmire; Zhibo Jiang; Yohko Tsuboi

We report here results from a Chandra ACIS observation of the stellar populations in and around the M17 H II region. The field reveals 886 sources with observed X-ray luminosities (uncorrected for absorption) between similar to 29.3 ergs s(-1) < log L(X) < 32.8 ergs s(-1), 771 of which have stellar counterparts in infrared images. In addition to comprehensive tables of X-ray source properties, several results are presented:

Collaboration


Dive into the Leisa K. Townsley's collaboration.

Top Co-Authors

Avatar

Patrick S. Broos

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Gordon Garmire

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Eric D. Feigelson

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Konstantin V. Getman

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

E. D. Feigelson

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

W. N. Brandt

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge