Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leiyun Weng is active.

Publication


Featured researches published by Leiyun Weng.


PLOS Pathogens | 2010

RNA Polymerase Activity and Specific RNA Structure Are Required for Efficient HCV Replication in Cultured Cells

Asako Murayama; Leiyun Weng; Tomoko Date; Daisuke Akazawa; Xiao Hai Tian; Tetsuro Suzuki; Takanobu Kato; Yasuhito Tanaka; Masashi Mizokami; Takaji Wakita; Tetsuya Toyoda

We have previously reported that the NS3 helicase (N3H) and NS5B-to-3′X (N5BX) regions are important for the efficient replication of hepatitis C virus (HCV) strain JFH-1 and viral production in HuH-7 cells. In the current study, we investigated the relationships between HCV genome replication, virus production, and the structure of N5BX. We found that the Q377R, A450S, S455N, R517K, and Y561F mutations in the NS5B region resulted in up-regulation of J6CF NS5B polymerase activity in vitro. However, the activation effects of these mutations on viral RNA replication and virus production with JFH-1 N3H appeared to differ. In the presence of the N3H region and 3′ untranslated region (UTR) of JFH-1, A450S, R517K, and Y561F together were sufficient to confer HCV genome replication activity and virus production ability to J6CF in cultured cells. Y561F was also involved in the kissing-loop interaction between SL3.2 in the NS5B region and SL2 in the 3′X region. We next analyzed the 3′ structure of HCV genome RNA. The shorter polyU/UC tracts of JFH-1 resulted in more efficient RNA replication than J6CF. Furthermore, 9458G in the JFH-1 variable region (VR) was responsible for RNA replication activity because of its RNA structures. In conclusion, N3H, high polymerase activity, enhanced kissing-loop interactions, and optimal viral RNA structure in the 3′UTR were required for J6CF replication in cultured cells.


PLOS Pathogens | 2012

Self-Enhancement of Hepatitis C Virus Replication by Promotion of Specific Sphingolipid Biosynthesis

Yuichi Hirata; Kazutaka Ikeda; Masayuki Sudoh; Yuko Tokunaga; Akemi Suzuki; Leiyun Weng; Masatoshi Ohta; Yoshimi Tobita; Ken Okano; Kazuhisa Ozeki; Kenichi Kawasaki; Takuo Tsukuda; Asao Katsume; Yuko Aoki; Takuya Umehara; Satoshi Sekiguchi; Tetsuya Toyoda; Kunitada Shimotohno; Tomoyoshi Soga; Masahiro Nishijima; Ryo Taguchi; Michinori Kohara

Lipids are key components in the viral life cycle that affect host-pathogen interactions. In this study, we investigated the effect of HCV infection on sphingolipid metabolism, especially on endogenous SM levels, and the relationship between HCV replication and endogenous SM molecular species. We demonstrated that HCV induces the expression of the genes (SGMS1 and 2) encoding human SM synthases 1 and 2. We observed associated increases of both total and individual sphingolipid molecular species, as assessed in human hepatocytes and in the detergent-resistant membrane (DRM) fraction in which HCV replicates. SGMS1 expression had a correlation with HCV replication. Inhibition of sphingolipid biosynthesis with a hepatotropic serine palmitoyltransferase (SPT) inhibitor, NA808, suppressed HCV-RNA production while also interfering with sphingolipid metabolism. Further, we identified the SM molecular species that comprise the DRM fraction and demonstrated that these endogenous SM species interacted with HCV nonstructural 5B polymerase to enhance viral replication. Our results reveal that HCV alters sphingolipid metabolism to promote viral replication, providing new insights into the formation of the HCV replication complex and the involvement of host lipids in the HCV life cycle.


Journal of Virology | 2010

Sphingomyelin Activates Hepatitis C Virus RNA Polymerase in a Genotype-Specific Manner

Leiyun Weng; Yuichi Hirata; Masaaki Arai; Michinori Kohara; Takaji Wakita; Koichi Watashi; Kunitada Shimotohno; Ying He; Jin Zhong; Tetsuya Toyoda

ABSTRACT Hepatitis C virus (HCV) replication and infection depend on the lipid components of the cell, and replication is inhibited by inhibitors of sphingomyelin biosynthesis. We found that sphingomyelin bound to and activated genotype 1b RNA-dependent RNA polymerase (RdRp) by enhancing its template binding activity. Sphingomyelin also bound to 1a and JFH1 (genotype 2a) RdRps but did not activate them. Sphingomyelin did not bind to or activate J6CF (2a) RdRp. The sphingomyelin binding domain (SBD) of HCV RdRp was mapped to the helix-turn-helix structure (residues 231 to 260), which was essential for sphingomyelin binding and activation. Helix structures (residues 231 to 241 and 247 to 260) are important for RdRp activation, and 238S and 248E are important for maintaining the helix structures for template binding and RdRp activation by sphingomyelin. 241Q in helix 1 and the negatively charged 244D at the apex of the turn are important for sphingomyelin binding. Both amino acids are on the surface of the RdRp molecule. The polarity of the phosphocholine of sphingomyelin is important for HCV RdRp activation. However, phosphocholine did not activate RdRp. Twenty sphingomyelin molecules activated one RdRp molecule. The biochemical effect of sphingomyelin on HCV RdRp activity was virologically confirmed by the HCV replicon system. We also found that the SBD was the lipid raft membrane localization domain of HCV NS5B because JFH1 (2a) replicon cells harboring NS5B with the mutation A242C/S244D moved to the lipid raft while the wild type did not localize there. This agreed with the myriocin sensitivity of the mutant replicon. This sphingomyelin interaction is a target for HCV infection because most HCV RdRps have 241Q.


Biochemical and Biophysical Research Communications | 2010

Biochemical and kinetic analysis of the influenza virus RNA polymerase purified from insect cells

Shijian Zhang; Leiyun Weng; Liqing Geng; Jinlan Wang; Jingling Zhou; Vincent Deubel; Philippe Buchy; Tetsuya Toyoda

The influenza virus RNA polymerase (RdRp) was purified from insect cells (around 0.2mg/l). The RdRp catalyzed all the biochemical reactions of influenza virus transcription and replication in vitro; dinucleotide ApG and globin mRNA-primed transcription, de novo initiation (replication), and polyadenylation. The optimal Mg concentration, pH and temperature were 8mM, 8.0 and 25 degrees C, respectively, which were slightly different from those measured for RdRp of virions. This system is a single-round transcription system. K(m) (microM) were 10.74+/-0.26 (GTP), 33.22+/-3.37 (ATP), 28.93+/-0.48 (CTP) and 22.01+/-1.48 (UTP), and V(max) (fmol nucleotide/pmol RdRp/min) were 2.40+/-0.032 (GTP), 1.95+/-0.17 (ATP), 2.07+/-0.17 (CTP), and 1.52+/-0.38 (UTP), which agreed with high mutation of influenza viruses.


Virology | 2012

The N-terminal helix α0 of hepatitis C virus NS3 protein dictates the subcellular localization and stability of NS3/NS4A complex

Ying He; Leiyun Weng; Rui Li; Li Li; Tetsuya Toyoda; Jin Zhong

The N-terminal amphipathic helix α(0) of hepatitis C virus (HCV) NS3 protein is an essential structural determinant for the protein membrane association. Here, we performed functional analysis to probe the role of this helix α(0) in the HCV life cycle. A point mutation M21P in this region that destroyed the helix formation disrupted the membrane association of NS3 protein and completely abolished HCV replication. Mechanistically the mutation did not affect either protease or helicase/NTPase activities of NS3, but significantly reduced the stability of NS3 protein. Furthermore, the membrane association and stability of NS3 protein can be restored by replacing the helix α(0) with an amphipathic helix of the HCV NS5A protein. In summary, our data demonstrated that the amphipathic helix α(0) of NS3 protein determines the proper membrane association of NS3, and this subcellular localization dictates the functional role of NS3 in the HCV life cycle.


Biochimica et Biophysica Acta | 2011

Biochemical characterization of enterovirus 71 3D RNA polymerase

Hongbing Jiang; Leiyun Weng; Na Zhang; Minetaro Arita; Renqing Li; Lijuan Chen; Tetsuya Toyoda

An unusual enterovirus 71 (EV71) epidemic has begun in China since 2008. EV71 RNA polymerases (3D(pol)) showed polymerase activity with an Mn(2+). Little activity was detected with Co(2+), and no activity was detected with Mg(2+), Ca(2+), Cu(2+), Ni(2+), Cd(2+), or Zn(2+). It is a primer-dependent polymerase, and the enzyme functioned with both di- and 10-nucleotide RNA primers. DNA primer, dT15, increased primer activity, similar to other enterovirus 3D(pol). However, EV71 3D(pol) initiated de novo transcription with a poly(C) template and genome RNA. Its RNA binding activity was weak. Terminal nucleotidyl transferase and reverse transcriptase activity were not detected. The Km and Vmax for EV71 3D(pol) were calculated from classic Lineweaver-Burk plots. The Km values were 2.35±0.05 (ATP), 5.40±0.93 (CTP), 1.12±0.10 (GTP) and 2.81±0.31 (UTP), and the Vmax values were 0.00078±0.00005/min (ATP), 0.011±0.0017/min (CTP), 0.050±0.0043/min (GTP) and 0.0027±0.0005/min (UTP). The Km of EV71 3D(pol) was similar to that of foot and mouth disease virus and rhinovirus. Polymerase activity of BrCr-TR strain and a strain from a clinical isolate in Beijing, 2008 were similar, indicating the potential for 3D(pol) as an antiviral drug target.


Biochimica et Biophysica Acta | 2012

Effect of the methyltransferase domain of Japanese encephalitis virus NS5 on the polymerase activity.

Qiang Wang; Leiyun Weng; Xiao Tian; Dorian Counor; Jin Sun; Yingying Mao; Vincent Deubel; Hidechika Okada; Tetsuya Toyoda

Japanese encephalitis virus (JEV) NS5 consists of an N-terminal guanylyltransferase/methyltransferase (MTase) domain and a C-terminal RNA-dependent RNA polymerase (RdRp) domain. We purified JEV NS5 from bacteria and examined its RdRp activity in vitro. It showed exclusive specificity for Mn(2+) and alkaline conditions (pH 8-10) for RdRp activity. It showed strong RdRp activity with dinucleotide primers, and the order of template strength was poly(U)>(I)>(A)>(C). It showed weak transcription activity without primers, but could not transcribe poly(I) without primers. It bound homopolymeric RNA templates, but weakly bound poly(C). The Km (μM) values were 22.13±1.11 (ATP), 21.94±3.88 (CTP), 21.27±1.23 (GTP), and 9.91±0.30 (UTP), indicating low substrate affinity. Vmax (/min) values were 0.216±0.017 (ATP), 0.781±0.020 (CTP), 0.597±0.049 (GTP), and 0.347±0.022 (UTP), indicating high polymerization activity. The RdRp domain alone did not show RdRp activity; a structural and functional interaction between the MTase and RdRp domains via 299-EHPYRTWTYH-308 (MTase domain) and 739-LIGRARISPG-748 (RdRp domain) was predicted, because mutations in the MTase domain affected RdRp activity.


Biochimica et Biophysica Acta | 2012

Different mechanisms of hepatitis C virus RNA polymerase activation by cyclophilin A and B in vitro

Leiyun Weng; Xiao Tian; Yayi Gao; Koichi Watashi; Kunitada Shimotohno; Takaji Wakita; Michinori Kohara; Tetsuya Toyoda

BACKGROUND Cyclophilins (CyPs) are cellular proteins that are essential to hepatitis C virus (HCV) replication. Since cyclosporine A was discovered to inhibit HCV infection, the CyP pathway contributing to HCV replication is a potential attractive stratagem for controlling HCV infection. Among them, CyPA is accepted to interact with HCV nonstructural protein (NS) 5A, although interaction of CyPB and NS5B, an RNA-dependent RNA polymerase (RdRp), was proposed first. METHODS CyPA, CyPB, and HCV RdRp were expressed in bacteria and purified using combination column chromatography. HCV RdRp activity was analyzed in vitro with purified CyPA and CyPB. RESULTS CyPA at a high concentration (50× higher than that of RdRp) but not at low concentration activated HCV RdRp. CyPB had an allosteric effect on genotype 1b RdRp activation. CyPB showed genotype specificity and activated genotype 1b and J6CF (2a) RdRps but not genotype 1a or JFH1 (2a) RdRps. CyPA activated RdRps of genotypes 1a, 1b, and 2a. CyPB may also support HCV genotype 1b replication within the infected cells, although its knockdown effect on HCV 1b replicon activity was controversial in earlier reports. CONCLUSIONS CyPA activated HCV RdRp at the early stages of transcription, including template RNA binding. CyPB also activated genotype 1b RdRp. However, their activation mechanisms are different. GENERAL SIGNIFICANCE These data suggest that both CyPA and CyPB are excellent targets for the treatment of HCV 1b, which shows the greatest resistance to interferon and ribavirin combination therapy.


Antiviral Chemistry & Chemotherapy | 2011

Inhibition of Influenza Virus Replication by Constrained Peptides Targeting Nucleoprotein

Hongbing Jiang; Yidong Xu; Li Li; Leiyun Weng; Qiang Wang; Shijian Zhang; Baosen Jia; Hongxing Hu; Ying He; Yves Jacob; Tetsuya Toyoda

Background: Because of high mutation rates, new drug-resistant viruses are rapidly evolving, thus making the necessary control of influenza virus infection difficult. Methods: We screened a constrained cysteine-rich peptide library mimicking μ-conotoxins from Conus geographus and a proline-rich peptide library mimicking lebocin 1 and 2 from Bombyx mori by using influenza virus RNA polymerase (PB1, PB2 and PA) and nucleoprotein (NP) as baits. Results: Among the 22 peptides selected from the libraries, we found that the NP-binding proline-rich peptide, PPWCCCSPMKRASPPPAQSDLPATPKCPP, inhibited influenza replicon activity to mean ±SD 40.7% ±15.8% when expressed as a GFP fusion peptide in replicon cells. Moreover, when the GFP fusion peptide was transduced into cells by an HIV-TAT protein transduction domain sequence, the replication of influenza virus A/WSN/33 (WSN) at a multiplicity of infection of 0.01 was inhibited to 20% and 69% at 12 and 24 h post-infection, respectively. In addition, the TAT-GFP fusion peptide was able to slightly protect Balb/c mice from WSN infection when administrated prior to the infection. Conclusions: These results suggest the potential of this peptide as the seed of an anti-influenza drug and reveal the usefulness of the constrained peptide strategy for generating inhibitors of influenza infection. The results also suggest that influenza NP, which is conserved among the influenza A viruses, is a good target for influenza inhibition, despite being the most abundant protein in infected cells.


Gene | 2012

Detergent-induced activation of the hepatitis C virus genotype 1b RNA polymerase.

Leiyun Weng; Michinori Kohara; Takaji Wakita; Kunitada Shimotohno; Tetsuya Toyoda

Recently, we found that sphingomyelin bound and activated hepatitis C virus (HCV) 1b RNA polymerase (RdRp), thereby recruiting the HCV replication complex into lipid raft structures. Detergents are commonly used for resolving lipids and purifying proteins, including HCV RdRp. Here, we tested the effect of detergents on HCV RdRp activity in vitro and found that non-ionic (Triton X-100, NP-40, Tween 20, Tween 80, and Brij 35) and twitterionic (CHAPS) detergents activated HCV 1b RdRps by 8-16.6 folds, but did not affect 1a or 2a RdRps. The maximum effect of these detergents was observed at around their critical micelle concentrations. On the other hand, ionic detergents (SDS and DOC) completely inactivated polymerase activity at 0.01%. In the presence of Triton X-100, HCV 1b RdRp did not form oligomers, but recruited more template RNA and increased the speed of polymerization. Comparison of polymerase and RNA-binding activity between JFH1 RdRp and Triton X-100-activated 1b RdRp indicated that monomer RdRp showed high activity because JFH1 RdRp was a monomer in physiological conditions of transcription. Besides, 502H plays a key role on oligomerization of 1b RdRp, while 2a RdRps which have the amino acid S at position 502 are monomers. This oligomer formed by 502H was disrupted both by high salt and Triton X-100. On the contrary, HCV 1b RdRp completely lost fidelity in the presence of 0.02% Triton X-100, which suggests that caution should be exercised while using Triton X-100 in anti-HCV RdRp drug screening tests.

Collaboration


Dive into the Leiyun Weng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takaji Wakita

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Michinori Kohara

Institute of Medical Science

View shared research outputs
Top Co-Authors

Avatar

Qiang Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Kunitada Shimotohno

Chiba Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Hongbing Jiang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ying He

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jin Zhong

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge