Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leizhen Wei is active.

Publication


Featured researches published by Leizhen Wei.


Nature Communications | 2015

Interactome analysis identifies a new paralogue of XRCC4 in non-homologous end joining DNA repair pathway

Mengtan Xing; Mingrui Yang; Wei Huo; Feng Feng; Leizhen Wei; Wenxia Jiang; Shaokai Ning; Zhenxin Yan; Wen Li; Qingsong Wang; Mei Hou; Chunxia Dong; Rong Guo; Jianguo Ji; Shan Zha; Li Lan; Huanhuan Liang; Dongyi Xu

Non-homologous end joining (NHEJ) is a major pathway to repair DNA double-strand breaks (DSBs), which can display different types of broken ends. However, it is unclear how NHEJ factors organize to repair diverse types of DNA breaks. Here, through systematic analysis of the human NHEJ factor interactome, we identify PAXX as a direct interactor of Ku. The crystal structure of PAXX is similar to those of XRCC4 and XLF. Importantly, PAXX-deficient cells are sensitive to DSB-causing agents. Moreover, epistasis analysis demonstrates that PAXX functions together with XLF in response to ionizing radiation-induced complex DSBs, whereas they function redundantly in response to Topo2 inhibitor-induced simple DSBs. Consistently, PAXX and XLF coordinately promote the ligation of complex but not simple DNA ends in vitro. Altogether, our data identify PAXX as a new NHEJ factor and provide insight regarding the organization of NHEJ factors responding to diverse types of DSB ends.


Cancer Discovery | 2015

ARID1A Deficiency Impairs the DNA Damage Checkpoint and Sensitizes Cells to PARP Inhibitors

Jianfeng Shen; Yang Peng; Leizhen Wei; Wei Zhang; Lin Yang; Li Lan; Prabodh Kapoor; Zhenlin Ju; Qianxing Mo; Ie Ming Shih; Ivan P. Uray; Xiangwei Wu; Powel H. Brown; Xuetong Shen; Gordon B. Mills; Guang Peng

UNLABELLED ARID1A, SWI/SNF chromatin remodeling complex subunit, is a recently identified tumor suppressor that is mutated in a broad spectrum of human cancers. Thus, it is of fundamental clinical importance to understand its molecular functions and determine whether ARID1A deficiency can be exploited therapeutically. In this article, we report a key function of ARID1A in regulating the DNA damage checkpoint. ARID1A is recruited to DNA double-strand breaks (DSB) via its interaction with the upstream DNA damage checkpoint kinase ATR. At the molecular level, ARID1A facilitates efficient processing of DSB to single-strand ends and sustains DNA damage signaling. Importantly, ARID1A deficiency sensitizes cancer cells to PARP inhibitors in vitro and in vivo, providing a potential therapeutic strategy for patients with ARID1A-mutant tumors. SIGNIFICANCE ARID1A has been identified as one of the most frequently mutated genes across human cancers. Our data suggest that clinical utility of PARP inhibitors might be extended beyond patients with BRCA mutations to a larger group of patients with ARID1A-mutant tumors, which may exhibit therapeutic vulnerability to PARP inhibitors.


Molecular and Cellular Biology | 2008

Rapid Recruitment of BRCA1 to DNA Double-Strand Breaks Is Dependent on Its Association with Ku80

Leizhen Wei; Li Lan; Zehui Hong; Akira Yasui; Chikashi Ishioka; Natsuko Chiba

ABSTRACT BRCA1 is the first susceptibility gene to be linked to breast and ovarian cancers. Although mounting evidence has indicated that BRCA1 participates in DNA double-strand break (DSB) repair pathways, its precise mechanism is still unclear. Here, we analyzed the in situ response of BRCA1 at DSBs produced by laser microirradiation. The amino (N)- and carboxyl (C)-terminal fragments of BRCA1 accumulated independently at DSBs with distinct kinetics. The N-terminal BRCA1 fragment accumulated immediately after laser irradiation at DSBs and dissociated rapidly. In contrast, the C-terminal fragment of BRCA1 accumulated more slowly at DSBs but remained at the sites. Interestingly, rapid accumulation of the BRCA1 N terminus, but not the C terminus, at DSBs depended on Ku80, which functions in the nonhomologous end-joining (NHEJ) pathway, independently of BARD1, which binds to the N terminus of BRCA1. Two small regions in the N terminus of BRCA1 independently accumulated at DSBs and interacted with Ku80. Missense mutations found within the N terminus of BRCA1 in cancers significantly changed the kinetics of its accumulation at DSBs. A P142H mutant failed to associate with Ku80 and restore resistance to irradiation in BRCA1-deficient cells. These might provide a molecular basis of the involvement of BRCA1 in the NHEJ pathway of the DSB repair process.


Nucleic Acids Research | 2014

Novel method for site-specific induction of oxidative DNA damage reveals differences in recruitment of repair proteins to heterochromatin and euchromatin

Li Lan; Satoshi Nakajima; Leizhen Wei; Luxi Sun; Ching-Lung Hsieh; Robert W. Sobol; Marcel P. Bruchez; Bennett Van Houten; Akira Yasui; Arthur S. Levine

Reactive oxygen species (ROS)-induced DNA damage is repaired by the base excision repair pathway. However, the effect of chromatin structure on BER protein recruitment to DNA damage sites in living cells is poorly understood. To address this problem, we developed a method to specifically produce ROS-induced DNA damage by fusing KillerRed (KR), a light-stimulated ROS-inducer, to a tet-repressor (tetR-KR) or a transcription activator (TA-KR). TetR-KR or TA-KR, bound to a TRE cassette (∼90 kb) integrated at a defined genomic locus in U2OS cells, was used to induce ROS damage in hetero- or euchromatin, respectively. We found that DNA glycosylases were efficiently recruited to DNA damage in heterochromatin, as well as in euchromatin. PARP1 was recruited to DNA damage within condensed chromatin more efficiently than in active chromatin. In contrast, recruitment of FEN1 was highly enriched at sites of DNA damage within active chromatin in a PCNA- and transcription activation-dependent manner. These results indicate that oxidative DNA damage is differentially processed within hetero or euchromatin.


Proceedings of the National Academy of Sciences of the United States of America | 2015

DNA damage during the G0/G1 phase triggers RNA-templated, Cockayne syndrome B-dependent homologous recombination

Leizhen Wei; Satoshi Nakajima; Stefanie Böhm; Kara A. Bernstein; Zhiyuan Shen; Michael Tsang; Arthur S. Levine; Li Lan

Significance Unrepaired DNA strand breaks at transcriptionally active sites are expected to be more deleterious than elsewhere in the genome because the integrity of the coding regions is likely to be compromised. The commonly recognized homologous recombination (HR) process occurs in the G2/M phase and depends on the presence of sister chromatids as a donor template. Our data demonstrate a Cockayne syndrome protein B- and RNA-dependent mechanism of transcription-associated HR in the G0/G1 phase and offer insight into double strand break repair at sites of active transcription. The data suggest that a deficiency in this repair mechanism might explain why neurodegeneration as well as tumorigenesis may be associated with seemingly stable, terminally differentiated (G0) cell populations. Damage repair mechanisms at transcriptionally active sites during the G0/G1 phase are largely unknown. To elucidate these mechanisms, we introduced genome site-specific oxidative DNA damage and determined the role of transcription in repair factor assembly. We find that KU and NBS1 are recruited to damage sites independent of transcription. However, assembly of RPA1, RAD51C, RAD51, and RAD52 at such sites is strictly governed by active transcription and requires both wild-type Cockayne syndrome protein B (CSB) function and the presence of RNA in the G0/G1 phase. We show that the ATPase activity of CSB is indispensable for loading and binding of the recombination factors. CSB counters radiation-induced DNA damage in both cells and zebrafish models. Taken together, our results have uncovered a novel, RNA-based recombination mechanism by which CSB protects genome stability from strand breaks at transcriptionally active sites and may provide insight into the clinical manifestations of Cockayne syndrome.


Nature Communications | 2014

HSP90 regulates DNA repair via the interaction between XRCC1 and DNA polymerase β.

Qingming Fang; Burcu Inanc; Sandy Schamus; Xiao-hong Wang; Leizhen Wei; Ashley R. Brown; David Svilar; Kelsey F. Sugrue; Eva M. Goellner; Xuemei Zeng; Nathan A. Yates; Li Lan; Conchita Vens; Robert W. Sobol

Cellular DNA repair processes are crucial to maintain genome stability and integrity. In DNA base excision repair, a tight heterodimer complex formed by DNA polymerase β (Polβ) and XRCC1 is thought to facilitate repair by recruiting Polβ to DNA damage sites. Here we show that disruption of the complex does not impact DNA damage response or DNA repair. Instead, the heterodimer formation is required to prevent ubiquitylation and degradation of Polβ. In contrast, the stability of the XRCC1 monomer is protected from CHIP-mediated ubiquitylation by interaction with the binding partner HSP90. In response to cellular proliferation and DNA damage, proteasome and HSP90-mediated regulation of Polβ and XRCC1 alters the DNA repair complex architecture. We propose that protein stability, mediated by DNA repair protein complex formation, functions as a regulatory mechanism for DNA repair pathway choice in the context of cell cycle progression and genome surveillance.


Cancer Science | 2011

BRCA1 contributes to transcription‐coupled repair of DNA damage through polyubiquitination and degradation of Cockayne syndrome B protein

Leizhen Wei; Li Lan; Akira Yasui; Kiyoji Tanaka; Masafumi Saijo; Ayako Matsuzawa; Risa Kashiwagi; Emiko Maseki; Yiheng Hu; Jeffrey D. Parvin; Chikashi Ishioka; Natsuko Chiba

BRCA1 is an important gene involved in susceptibility to breast and ovarian cancer and its product regulates the cellular response to DNA double‐strand breaks. Here, we present evidence that BRCA1 also contributes to the transcription‐coupled repair (TCR) of ultraviolet (UV) light‐induced DNA damage. BRCA1 immediately accumulates at the sites of UV irradiation‐mediated damage in cell nuclei in a manner that is fully dependent on both Cockayne syndrome B (CSB) protein and active transcription. Suppression of BRCA1 expression inhibits the TCR of UV lesions and increases the UV sensitivity of cells proficient in TCR. BRCA1 physically interacts with CSB protein. BRCA1 polyubiquitinates CSB and this polyubiquitination and subsequent degradation of CSB occur following UV irradiation, even in the absence of Cockayne syndrome A (CSA) protein. The depletion of BRCA1 expression increases the UV sensitivity of CSA‐deficient cells. These results indicate that BRCA1 is involved in TCR and that a BRCA1‐dependent polyubiquitination pathway for CSB exists alongside the CSA‐dependent pathway to yield more efficient excision repair of lesions on the transcribed DNA strand. (Cancer Sci 2011; 102: 1840–1847)


Journal of Cell Science | 2013

Damage response of XRCC1 at sites of DNA single strand breaks is regulated by phosphorylation and ubiquitylation after degradation of poly(ADP-ribose)

Leizhen Wei; Satoshi Nakajima; Ching-Lung Hsieh; Shin-ichiro Kanno; Mitsuko Masutani; Arthur S. Levine; Akira Yasui; Li Lan

Summary Single-strand breaks (SSBs) are the most common type of oxidative DNA damage and they are related to aging and many genetic diseases. The scaffold protein for repair of SSBs, XRCC1, accumulates at sites of poly(ADP-ribose) (pAR) synthesized by PARP, but it is retained at sites of SSBs after pAR degradation. How XRCC1 responds to SSBs after pAR degradation and how this affects repair progression are not well understood. We found that XRCC1 dissociates from pAR and is translocated to sites of SSBs dependent on its BRCTII domain and the function of PARG. In addition, phosphorylation of XRCC1 is also required for the proper dissociation kinetics of XRCC1 because (1) phosphorylation sites mutated in XRCC1 (X1 pm) cause retention of XRCC1 at sites of SSB for a longer time compared to wild type XRCC1; and (2) phosphorylation of XRCC1 is required for efficient polyubiquitylation of XRCC1. Interestingly, a mutant of XRCC1, LL360/361DD, which abolishes pAR binding, shows significant upregulation of ubiquitylation, indicating that pARylation of XRCC1 prevents the poly-ubiquitylation. We also found that the dynamics of the repair proteins DNA polymerase beta, PNK, APTX, PCNA and ligase I are regulated by domains of XRCC1. In summary, the dynamic damage response of XRCC1 is regulated in a manner that depends on modifications of polyADP-ribosylation, phosphorylation and ubiquitylation in live cells.


Molecular Cell | 2014

The BRCA1/BARD1-Interacting Protein OLA1 Functions in Centrosome Regulation

Ayako Matsuzawa; Shin-ichiro Kanno; Masahiro Nakayama; Hironori Mochiduki; Leizhen Wei; Tatsuro Shimaoka; Yumiko Furukawa; Kei Kato; Shun Shibata; Akira Yasui; Chikashi Ishioka; Natsuko Chiba

The breast and ovarian cancer-specific tumor suppressor BRCA1, along with its heterodimer partner BRCA1-associated RING domain protein (BARD1), plays important roles in DNA repair, centrosome regulation, and transcription. To explore further functions of BRCA1/BARD1, we performed mass spectrometry analysis and identified Obg-like ATPase 1 (OLA1) as a protein that interacts with the carboxy-terminal region of BARD1. OLA1 directly bound to the amino-terminal region of BRCA1 and γ-tubulin. OLA1 localized to centrosomes in interphase and to the spindle pole in mitotic phase, and its knockdown resulted in centrosome amplification and the activation of microtubule aster formation. OLA1 with a mutation observed in breast cancer cell line, E168Q, failed to bind BRCA1 and rescue the OLA1 knockdown-induced centrosome amplification. BRCA1 variant I42V also abrogated the binding of BRCA1 to OLA1. These findings suggest that OLA1 plays an important role in centrosome regulation together with BRCA1.


Cell Research | 2015

Tyrosine 370 phosphorylation of ATM positively regulates DNA damage response.

Hong Jen Lee; Li Lan; Guang Peng; Wei Chao Chang; Ming Chuan Hsu; Ying Nai Wang; Chien Chia Cheng; Leizhen Wei; Satoshi Nakajima; Shih Shin Chang; Hsin Wei Liao; Chung-Hsuan Chen; Martin F. Lavin; K. Kian Ang; Shiaw Yih Lin; Mien Chie Hung

Ataxia telangiectasia mutated (ATM) mediates DNA damage response by controling irradiation-induced foci formation, cell cycle checkpoint, and apoptosis. However, how upstream signaling regulates ATM is not completely understood. Here, we show that upon irradiation stimulation, ATM associates with and is phosphorylated by epidermal growth factor receptor (EGFR) at Tyr370 (Y370) at the site of DNA double-strand breaks. Depletion of endogenous EGFR impairs ATM-mediated foci formation, homologous recombination, and DNA repair. Moreover, pretreatment with an EGFR kinase inhibitor, gefitinib, blocks EGFR and ATM association, hinders CHK2 activation and subsequent foci formation, and increases radiosensitivity. Thus, we reveal a critical mechanism by which EGFR directly regulates ATM activation in DNA damage response, and our results suggest that the status of ATM Y370 phosphorylation has the potential to serve as a biomarker to stratify patients for either radiotherapy alone or in combination with EGFR inhibition.

Collaboration


Dive into the Leizhen Wei's collaboration.

Top Co-Authors

Avatar

Li Lan

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge