Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lejian Huang is active.

Publication


Featured researches published by Lejian Huang.


Nature Neuroscience | 2012

Corticostriatal functional connectivity predicts transition to chronic back pain

Marwan N. Baliki; Bogdan Petre; Souraya Torbey; Kristina M. Herrmann; Lejian Huang; Thomas J. Schnitzer; Howard L. Fields; A. Vania Apkarian

The mechanism of brain reorganization in pain chronification is unknown. In a longitudinal brain imaging study, subacute back pain (SBP) patients were followed over the course of 1 year. When pain persisted (SBPp, in contrast to recovering SBP and healthy controls), brain gray matter density decreased. Initially greater functional connectivity of nucleus accumbens with prefrontal cortex predicted pain persistence, implying that corticostriatal circuitry is causally involved in the transition from acute to chronic pain.


Brain | 2013

Shape shifting pain: chronification of back pain shifts brain representation from nociceptive to emotional circuits

Javeria A. Hashmi; Marwan N. Baliki; Lejian Huang; Alex T. Baria; Souraya Torbey; Kristina M. Hermann; Thomas J. Schnitzer; A. Vania Apkarian

Chronic pain conditions are associated with abnormalities in brain structure and function. Moreover, some studies indicate that brain activity related to the subjective perception of chronic pain may be distinct from activity for acute pain. However, the latter are based on observations from cross-sectional studies. How brain activity reorganizes with transition from acute to chronic pain has remained unexplored. Here we study this transition by examining brain activity for rating fluctuations of back pain magnitude. First we compared back pain-related brain activity between subjects who have had the condition for ∼2 months with no prior history of back pain for 1 year (early, acute/subacute back pain group, n = 94), to subjects who have lived with back pain for >10 years (chronic back pain group, n = 59). In a subset of subacute back pain patients, we followed brain activity for back pain longitudinally over a 1-year period, and compared brain activity between those who recover (recovered acute/sub-acute back pain group, n = 19) and those in which the back pain persists (persistent acute/sub-acute back pain group, n = 20; based on a 20% decrease in intensity of back pain in 1 year). We report results in relation to meta-analytic probabilistic maps related to the terms pain, emotion, and reward (each map is based on >200 brain imaging studies, derived from neurosynth.org). We observed that brain activity for back pain in the early, acute/subacute back pain group is limited to regions involved in acute pain, whereas in the chronic back pain group, activity is confined to emotion-related circuitry. Reward circuitry was equally represented in both groups. In the recovered acute/subacute back pain group, brain activity diminished in time, whereas in the persistent acute/subacute back pain group, activity diminished in acute pain regions, increased in emotion-related circuitry, and remained unchanged in reward circuitry. The results demonstrate that brain representation for a constant percept, back pain, can undergo large-scale shifts in brain activity with the transition to chronic pain. These observations challenge long-standing theoretical concepts regarding brain and mind relationships, as well as provide important novel insights regarding definitions and mechanisms of chronic pain.


The Journal of Neuroscience | 2012

Abnormalities in Hippocampal Functioning with Persistent Pain

Amelia A. Mutso; Daniel Radzicki; Marwan N. Baliki; Lejian Huang; Ghazal Banisadr; Maria Virginia Centeno; Jelena Radulovic; Marco Martina; Richard J. Miller; A. Vania Apkarian

Chronic pain patients exhibit increased anxiety, depression, and deficits in learning and memory. Yet how persistent pain affects the key brain area regulating these behaviors, the hippocampus, has remained minimally explored. In this study we investigated the impact of spared nerve injury (SNI) neuropathic pain in mice on hippocampal-dependent behavior and underlying cellular and molecular changes. In parallel, we measured the hippocampal volume of three groups of chronic pain patients. We found that SNI animals were unable to extinguish contextual fear and showed increased anxiety-like behavior. Additionally, SNI mice compared with Sham animals exhibited hippocampal (1) reduced extracellular signal-regulated kinase expression and phosphorylation, (2) decreased neurogenesis, and (3) altered short-term synaptic plasticity. To relate the observed hippocampal abnormalities with human chronic pain, we measured the volume of human hippocampus in chronic back pain (CBP), complex regional pain syndrome (CRPS), and osteoarthritis patients (OA). Compared with controls, CBP and CRPS, but not OA, had significantly less bilateral hippocampal volume. These results indicate that hippocampus-mediated behavior, synaptic plasticity, and neurogenesis are abnormal in neuropathic rodents. The changes may be related to the reduction in hippocampal volume we see in chronic pain patients, and these abnormalities may underlie learning and emotional deficits commonly observed in such patients.


Pain | 2013

Brain white matter structural properties predict transition to chronic pain

Ali Mansour; Marwan N. Baliki; Lejian Huang; Souraya Torbey; Kristi M. Herrmann; Thomas J. Schnitzer; A. Vania Apkarian

Summary White matter fractional anisotropy differences accurately predicted back pain persistence over 1 year, and showed minimal alterations over the 1‐year period. Abstract Neural mechanisms mediating the transition from acute to chronic pain remain largely unknown. In a longitudinal brain imaging study, we followed up patients with a single sub‐acute back pain (SBP) episode for more than 1 year as their pain recovered (SBPr), or persisted (SBPp) representing a transition to chronic pain. We discovered brain white matter structural abnormalities (n = 24 SBP patients; SBPp = 12 and SBPr = 12), as measured by diffusion tensor imaging (DTI), at entry into the study in SBPp in comparison to SBPr. These white matter fractional anisotropy (FA) differences accurately predicted pain persistence over the next year, which was validated in a second cohort (n = 22 SBP patients; SBPp = 11 and SBPr = 11), and showed no further alterations over a 1‐year period. Tractography analysis indicated that abnormal regional FA was linked to differential structural connectivity to medial vs lateral prefrontal cortex. Local FA was correlated with functional connectivity between medial prefrontal cortex and nucleus accumbens in SBPr. As we have earlier shown that the latter functional connectivity accurately predicts transition to chronic pain, we can conclude that brain structural differences, most likely existing before the back pain–inciting event and independent of the back pain, predispose subjects to pain chronification.


Pain | 2012

Brain networks predicting placebo analgesia in a clinical trial for chronic back pain

Javeria A. Hashmi; Alex T. Baria; Marwan N. Baliki; Lejian Huang; Thomas J. Schnitzer; A. Vania Apkarian

Summary Chronic back pain patients possess brain functional connectivity pattern differences before the initiation of treatment that can reliably predict interindividual differences in placebo response. ABSTRACT A fundamental question for placebo research is whether such responses are a predisposition, quantifiable by brain characteristics. We examine this issue in chronic back pain (CBP) patients who participated in a double‐blind brain imaging (functional magnetic resonance imaging) clinical trial. We recently reported that when the 30 CBP participants were treated, for 2 weeks, with topical analgesic or no drug patches, pain and brain activity decreased independently of treatment type and thus were attributed to placebo responses. Here we examine in the same group brain markers for predicting placebo responses—that is, for differentiating between posttreatment persistent CBP (CBPp) and decreasing CBP (CBPd) groups. At baseline, pain and brain activity for rating spontaneous fluctuations of back pain were not different between the 2 groups. However, on the basis of brain activity differences after treatment, we identified that at baseline the extent of information shared (functional connectivity) between left medial prefrontal cortex and bilateral insula accurately (0.8) predicted posttreatment groups. This was validated in an independent cohort. Additionally, by means of frequency domain contrasts, we observe that at baseline, left dorsolateral prefrontal cortex high‐frequency oscillations also predicted treatment outcomes and identified an additional set of functional connections distinguishing treatment outcomes. Combining medial and lateral prefrontal functional connections, we observe a statistically higher accuracy (0.9) for predicting posttreatment groups. These findings indicate that placebo response can be identified a priori at least in CBP, and that neuronal population interactions between prefrontal cognitive and pain processing regions predetermine the probability of placebo response in the clinical setting.


Journal of Neurophysiology | 2014

Reorganization of hippocampal functional connectivity with transition to chronic back pain

Amelia A. Mutso; Bogdan Petre; Lejian Huang; Marwan N. Baliki; Souraya Torbey; Kristina M. Herrmann; Thomas J. Schnitzer; A. Vania Apkarian

The hippocampus has been shown to undergo significant changes in rodent models of neuropathic pain; however, the role of the hippocampus in human chronic pain and its contribution to pain chronification have remained unexplored. Here we examine hippocampal processing during a simple visual attention task. We used functional MRI to identify intrinsic and extrinsic hippocampal functional connectivity (synchronous neural activity), comparing subacute back pain (SBP, back pain 1-4 mo) and chronic back pain (CBP, back pain >10 yr) patients to control (CON) subjects. Both groups showed more extensive hippocampal connectivity than CON subjects. We then examined the evolution of hippocampal connectivity longitudinally in SBP patients who recovered (SBPr, back pain decreased >20% in 1 yr) and those with persistent pain (SBPp). We found that SBPp and SBPr subjects have distinct changes in hippocampal-cortical connectivity over 1 yr; specifically, SBPp subjects showed large decreases in hippocampal connectivity with medial prefrontal cortex (HG-mPFC). Furthermore, in SBP patients the strength of HG-mPFC reflected variations in back pain over the year. These relationships were replicated when examined in a different task performed by SBP patients (rating fluctuations of back pain), indicating that functional connectivity of the hippocampus changes robustly in subacute pain and the nature of these changes depends on whether or not patients recover from SBP. The observed reorganization of processing within the hippocampus and between the hippocampus and the cortex seems to contribute to the transition from subacute to chronic pain and may also underlie learning and emotional abnormalities associated with chronic pain.


Brain | 2016

Corticolimbic anatomical characteristics predetermine risk for chronic pain

Etienne Vachon-Presseau; Pascal Tétreault; Bogdan Petre; Lejian Huang; Sara E. Berger; Souraya Torbey; Alexis T. Baria; Ali Mansour; Javeria A. Hashmi; James W. Griffith; Erika Comasco; Thomas J. Schnitzer; Marwan N. Baliki; A. Vania Apkarian

SEE TRACEY DOI101093/BRAIN/AWW147 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Mechanisms of chronic pain remain poorly understood. We tracked brain properties in subacute back pain patients longitudinally for 3 years as they either recovered from or transitioned to chronic pain. Whole-brain comparisons indicated corticolimbic, but not pain-related circuitry, white matter connections predisposed patients to chronic pain. Intra-corticolimbic white matter connectivity analysis identified three segregated communities: dorsal medial prefrontal cortex-amygdala-accumbens, ventral medial prefrontal cortex-amygdala, and orbitofrontal cortex-amygdala-hippocampus. Higher incidence of white matter and functional connections within the dorsal medial prefrontal cortex-amygdala-accumbens circuit, as well as smaller amygdala volume, represented independent risk factors, together accounting for 60% of the variance for pain persistence. Opioid gene polymorphisms and negative mood contributed indirectly through corticolimbic anatomical factors, to risk for chronic pain. Our results imply that persistence of chronic pain is predetermined by corticolimbic neuroanatomical factors.


The Journal of Neuroscience | 2013

Parceling Human Accumbens into Putative Core and Shell Dissociates Encoding of Values for Reward and Pain

Marwan N. Baliki; Ali Mansour; Alex T. Baria; Lejian Huang; Sara E. Berger; Howard L. Fields; A. Vania Apkarian

In addition to their well-established role in signaling rewarding outcomes and reward-predictive cues and in mediating positive reinforcement, there is growing evidence that nucleus accumbens (NAc) neurons also signal aversive events and cues that predict them. Here we use diffusion tractography to subdivide the right NAc into lateral–rostral (putative core, pcore) and medial–caudal (putative shell, pshell) subdivisions in humans. The two subregions exhibited differential structural connectivity, based on probabilistic tractography, to prefrontal cortical and subcortical limbic regions. We also demonstrate unique roles for each of the two subdivisions for monetary reward and thermal pain perception tasks: pshell signaling impending pain and value predictions for monetary gambles and pcore activating with anticipation of cessation of thermal pain (signaling reward value of analgesia). We examined functional connectivity for resting state, monetary reward, and thermal pain tasks, and for all three conditions observed that pcore and pshell of right NAc exhibit distinct patterns of synchrony (functional connectivity) to prefrontal cortical and subcortical limbic targets within the right hemisphere. To validate the NAc segregation, we mirrored the coordinates of right NAc pcore and pshell onto the left hemisphere and examined structural and resting state connectivity in the left hemisphere. This latter analysis closely replicated target-specific connections we obtained for the right hemisphere. Overall, we demonstrate that the human NAc can be parceled based on structural and functional connectivity, and that activity in these subdivisions differentially encodes values for expected pain relief and for expected monetary reward.


NeuroImage | 2013

Linking human brain local activity fluctuations to structural and functional network architectures

Alexis T. Baria; Ali Mansour; Lejian Huang; Marwan N. Baliki; Guillermo A. Cecchi; M.-Marsel Mesulam; A. V. Apkarian

Activity of cortical local neuronal populations fluctuates continuously, and a large proportion of these fluctuations are shared across populations of neurons. Here we seek organizational rules that link these two phenomena. Using neuronal activity, as identified by functional MRI (fMRI) and for a given voxel or brain region, we derive a single measure of full bandwidth brain-oxygenation-level-dependent (BOLD) fluctuations by calculating the slope, α, for the log-linear power spectrum. For the same voxel or region, we also measure the temporal coherence of its fluctuations to other voxels or regions, based on exceeding a given threshold, Θ, for zero lag correlation, establishing functional connectivity between pairs of neuronal populations. From resting state fMRI, we calculated whole-brain group-averaged maps for α and for functional connectivity. Both maps showed similar spatial organization, with a correlation coefficient of 0.75 between the two parameters across all brain voxels, as well as variability with hodology. A computational model replicated the main results, suggesting that synaptic low-pass filtering can account for these interrelationships. We also investigated the relationship between α and structural connectivity, as determined by diffusion tensor imaging-based tractography. We observe that the correlation between α and connectivity depends on attentional state; specifically, α correlated more highly to structural connectivity during rest than while attending to a task. Overall, these results provide global rules for the dynamics between frequency characteristics of local brain activity and the architecture of underlying brain networks.


PLOS Computational Biology | 2012

Predictive Dynamics of Human Pain Perception

Guillermo A. Cecchi; Lejian Huang; Javeria A. Hashmi; Marwan N. Baliki; Maria Virginia Centeno; Irina Rish; A. Vania Apkarian

While the static magnitude of thermal pain perception has been shown to follow a power-law function of the temperature, its dynamical features have been largely overlooked. Due to the slow temporal experience of pain, multiple studies now show that the time evolution of its magnitude can be captured with continuous online ratings. Here we use such ratings to model quantitatively the temporal dynamics of thermal pain perception. We show that a differential equation captures the details of the temporal evolution in pain ratings in individual subjects for different stimulus pattern complexities, and also demonstrates strong predictive power to infer pain ratings, including readouts based only on brain functional images.

Collaboration


Dive into the Lejian Huang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ali Mansour

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bogdan Petre

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott K. Holland

Cincinnati Children's Hospital Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge