Lekan M. Latinwo
Florida A&M University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lekan M. Latinwo.
Experimental Neurology | 2001
Wan-Qian Zhao; Lekan M. Latinwo; Xiao-Xiao Liu; Eunsook Lee; Nazarius S. Lamango; Clivel G. Charlton
High nonphysiological doses of l-dopa are administered to Parkinsons disease (PD) patients, to replenish the depleted dopamine (DA). A large portion of the administered L-dopa and the newly formed DA undergoes methylation by reacting with S-adenosyl-L-methionine (SAM). In the process SAM, as well as L-dopa and DA, is utilized and great demands are placed on the transmethylation system. In this study we investigated whether L-dopa increases the transmethylation process by inducing methionine adenosyl transferase (MAT), the enzyme that produces SAM, and catechol-O-methyl transferase (COMT), the enzyme that transfers the methyl group from SAM to L-dopa and DA. Swiss Webster mice were injected with L-dopa, four times/day, for 1 to 16 days. Brain DA, 3-O-methyldopa (3-OMD), SAM, S-adenosylhomocysteine (SAH), MAT, and COMT were measured following a 24-h withdrawal period. An increase of 264% of brain DA occurred at days 2 and 3 after which it tapered to about 164% of control. The brain level of 3-OMD increased to 870% of the control. SAM was increased by 44% after the sixth day and SAH level was about double after the second day. After day 3, MAT activity was increased by about 35%. Western blot analysis showed that MAT is more clearly characterized in 10% mercaptoethanol reducing buffer in which 31.5-, 38- (beta), and 48-kDa (alpha1/alpha2) subunits were distinctly revealed. The induction of the 38-kDa and, more prominently, the 48-kDa subunits of MAT and the potential transactivator proteins of MAT, c-Jun/AP-1, was evident by day 6. The 31.5-kDa subunit was downregulated. COMT was detected as 24.7-, 30-, and 47.5-kDa bands in the brain, consistent with the membrane-bound COMT I (MB-COMT) and the dimeric COMT II. The 24.7- and the 30-kDa MB-COMT bands were induced in the brain by day 6 and peaked on day 9. The highlight of the study is the fact that L-dopa induces the enzymes MAT and COMT. In addition, the downturn in brain DA after the sixth day coincides with the increase in SAM and the 48-kDa MAT protein. Thus, during PD treatment with L-dopa the induction of MAT and COMT is likely to occur and in turn increase the methylation and reduction of L-dopa and DA that may help cause the tolerance or the wearing-off effect developed to L-dopa.
International Journal of Molecular Medicine | 2011
Caroline O. Odewumi; Veera L.D. Badisa; Uyen T. Le; Lekan M. Latinwo; Christopher O. Ikediobi; Ramesh B. Badisa; Selina Darling-Reed
In this study, the protective effects of N-acetylcysteine (NAC), a precursor of reduced glutathione, were studied by measuring the viability, the levels of antioxidant enzymes, and by analyzing the cell cycle in cadmium (Cd)-treated rat liver cells. The cells were treated with 150 µM CdCl2 alone or co-treated with 150 µM CdCl2 and 5 mM NAC (2 h pre-, simultaneous or 2 h post-treatment) for 24 h. The viability of the cells treated with 150 µM CdCl2 alone decreased to 40.1%, while that of the cells co-treated with 5 mM NAC (pre-, simultaneous and post-treatment) significantly increased to 83.7, 86.2 and 83.7%, respectively in comparison to the control cells (100%). The catalase enzyme level decreased to undetectable level in the cells treated with CdCl2 alone, while it significantly increased in the co-treated cells (pre-, simultaneous and post-treatment) to 40.1, 34.3 and 13.2%, respectively. In the cells treated with CdCl2 alone, the glutathione peroxidase enzyme level decreased to 78.3%, while it increased in the co-treated cells (pre-, simultaneous, and post-treatment) to 84.5, 83.3 and 87.9%, respectively. The glutathione reductase enzyme level decreased to 56.1% in the cells treated with cadmium alone, but significantly increased in the cells co treated with NAC (pre-, simultaneous and post-treatment) to 79.5, 78.5 and 78.2%, respectively. Cd caused cell cycle arrest at the S and G2/M phases. The co-treatment with NAC inhibited cell cycle arrest by shifting the cells to the G1 phase. These results clearly show the protective effects of NAC against Cd-induced damage in rat liver cells.
Bioorganic Chemistry | 2015
Musiliyu A. Musa; Lekan M. Latinwo; Clifford Virgile; Veera L.D. Badisa; Akintunde J. Gbadebo
Coumarins are naturally-occurring compounds that have attracted considerable interest due to their numerous biological activities depending on their pattern of substitution on the coumarin molecule. In this present investigation, we synthesized 3-(4-nitrophenyl)coumarin derivatives (9a-e) and evaluated their in vitro cytotoxic effect on human lung (A549), breast (MDA-MB-231) and prostate (PC3) cancer cell lines for 48 h using crystal violet dye binding assay. Cytotoxic effects of the most active compound on normal human lung (MRC-9) and breast (MCF-10A) cell lines, cell cycle analysis using flow cytometry and mitochondrial membrane potential (MMP) using Tetramethyl Rhodamine Methyl Ester (TMRM; rhodamine-123) fluorescent dye were also examined. Among the compounds that were evaluated, 9c showed cytotoxic effect (active), caused significant cells arrest (p<0.05) in G0/G1 and S phases of cell cycle and loss of MMP in A459, MDA-MB-231 and PC3 cell lines. Additionally, the cytotoxic effect of 9c was compared to reference drugs (Coumarin and Docetaxel) for comparative study. These results further demonstrate that acetoxy group at C-7 and C-8 positions of 9c are responsible for the observed cytotoxic effect in these cancer cell lines.
Molecular Medicine Reports | 2015
Caroline O. Odewumi; Lekan M. Latinwo; Andre Sinclair; Veera L.D. Badisa; Ahkinyala Abdullah; Ramesh B. Badisa
Cadmium is an environmentally hazardous metal, which causes toxicity in humans. Inhalation of cigarette smoke and industrial fumes containing cadmium are sources of cadmium exposure. It is responsible for the malfunction of various organs, leading to disease particularly in the lungs, liver and kidneys. In the present study, the effect of cadmium chloride (CdCl2) on cell viability, and the expression levels of interleukin (IL)-1α and IL-10 cytokines at various concentrations and incubation durations were assessed in MRC-9 human normal lung and A549 human lung cancer cells to elucidate the mechanism of cadmium toxicity. Cell viability was measured using a crystal violet dye binding assay. The expression levels of the cytokines were measured by cytokine specific enzyme-linked immunosorbent assay kits. The viability assay results revealed higher sensitivity of the A549 lung cancer cells to CdCl2 compared with the normal MRC-9 lung cells. In the normal MRC-9 lung cells, higher expression levels of the cytokines were observed at the lowest CdCl2 concentration at a shorter exposure time compared with the lung cancer cells. Higher levels of the cytokines were observed in the A549 lung cancer cells at all other times and concentrations compared with the MRC-9 cells, indicating higher levels of inflammation. The cytokine levels were reduced at higher CdCl2 concentrations and longer exposure durations, demonstrating the toxic effect of cadmium. The results indicated that CdCl2 affected the expression levels of the cytokines and led to cytotoxicity in human lung cells, and suggested that compounds which reduce inflammation may prevent cadmium toxicity.
Toxicology in Vitro | 2011
Caroline O. Odewumi; Rebecca Buggs; Veera L.D. Badisa; Lekan M. Latinwo; Ramesh B. Badisa; Christopher O. Ikediobi; Selina Darling-Reed; Marcia Allen Owens
Cadmium is non-essential, carcinogenic and multitarget pollutant in the environment. Monoisoamyl-2,3-dimercaptosuccinate (MiADMS) is an ester of dimercaptosuccinic acid that acts as an antioxidant and chelator. Therefore, the mitigative action of MiADMS on viability, morphology, antioxidative enzymes and cell cycle were studied on rat liver cells treated with cadmium chloride (CdCl2). The cells were treated with 150 μM CdCl2 alone or cotreated with 300 μM MiADMS (concurrently, 2 h or 4 h post-CdCl2 treatment) for 24 h. The viability of cells treated with CdCl2 alone was decreased in comparison to the control cells. Cotreatment with MiADMS resulted in an increase in cell viability in comparison to the CdCl2 alone treated cells. The CdCl2 treatment altered the morphological shape of the cells, while cotreatment with MiADMS restored the shape. Antioxidative enzymes activities were decreased in the cells treated with CdCl2 alone, while MiADMS cotreatment resulted in an increase in enzyme activities. The CdCl2 arrested the cells in S phase of the cell cycle. Cotreatment with MiADMS alleviated cell cycle arrest by shifting to G1 phase. These results clearly show the mitigative action of MiADMS on CdCl2 toxicity and may suggest that MiADMS can be used as an antidote against cadmium.
Molecular Medicine Reports | 2014
Ramesh B. Badisa; Cheryl A. Fitch-Pye; Maryam Agharahimi; Donald E. Palm; Lekan M. Latinwo; Carl B. Goodman
Cocaine is a powerful addictive drug, widely abused in most Western countries. It easily reaches various domains within and outside of the central nervous system (CNS), and triggers varying levels of cellular toxicity. No pharmacological treatment is available to alleviate cocaine-induced toxicity in the cells without side-effects. Here, we discerned the role of milk thistle (MT) seed extract against cocaine toxicity. First, we investigated acute cytotoxicity induced by treatment with 2, 3 and 4 mM cocaine for 1 h in astroglial, liver and kidney cells in vitro, and then in living shrimp larvae in vivo. We showed that astroglial cells are more sensitive to cocaine than liver, kidney cells or larvae. Cocaine exposure disrupted the general architecture of astroglial cells, induced vacuolation, decreased cell viability, and depleted the glutathione (GSH) level. These changes may represent the underlying pathology of cocaine in the astrocytes. By contrast, MT pretreatment (200 μg/ml) for 30 min sustained the cell morphological features and increased both cell viability and the GSH level. Besides its protective effects, the MT extract was revealed to be non-toxic to astroglial cells, and displayed high free-radical scavenging activity. The results from this study suggest that enhanced GSH level underlies cell protection, and indicate that compounds that promote GSH synthesis in the cells may be beneficial against cocaine toxicity.
Journal of Biochemical and Molecular Toxicology | 2018
Musiliyu A. Musa; Akintunde J. Gbadebo; Lekan M. Latinwo; Veera L.D. Badisa
We herein report the synthesis and in vitro cytotoxicity of 3‐arylcoumarin derivatives (6a‐f and 7a‐f) in human liver (HepG2), prostate (LNCap), and pancreatic (BxPC3) cancer cell lines. Among the tested compounds, 7,8‐dihydroxy‐3‐(4‐nitrophenyl) coumarin (7b) showed the highest cytotoxicity in the HepG2 cell line. The mechanism of cytotoxic action indicated that compound (7b) arrested HepG2 cells at the S phase of the cell cycle progression, induced loss of mitochondrial membrane potential, and caused reactive oxygen species (ROS)‐independent cell death. The cell viability result of pretreated HepG2 cells with antioxidant N‐acetylcysteine followed by compound (7b) treatment and the free radical scavenging activities of compound (7b) confirmed the ROS‐independent cell death. These results demonstrate that compound (7b) could serve as a valuable template for the development of novel synthetic compounds as potential anticancer agents for hepatocellular carcinoma treatment.
International Journal of Molecular Medicine | 2018
Caroline O. Odewumi; Lekan M. Latinwo; Roy Leonard Lyles; Veera L.D. Badisa; Cobb‑Abdullah Ahkinyala; Marijo Kent‑First
Cadmium (Cd), an economically valuable metal, is widely used in various industrial processes. Although it is of economic value, it is hazardous to human health. Cd accumulates in vital organs where it causes various diseases. Natural compounds with chelating or antioxidant properties have been tested to reduce the toxic effect of Cd. The anti-oxidant, anti-diabetic and hypocholesterolemic properties of fenugreek (Trigonella foenum-graecum) leaves make it a candidate for investigation as protective agent against Cd-induced toxicity. In the present study, the protective effects of fenugreek leaf extract (FLE) on cell viability, morphology, and whole genomic transcription in cadmium chloride (CdCl2)-treated rat liver cells were analyzed. The cells were treated with 25 µM CdCl2 alone, or co-treated with 5 µg/ml FLE for 48 h. The co-treated cells were pretreated with FLE for 2 or 4 h, followed by CdCl2 treatment. Genomic transcription analysis was performed in the CdCl2-treated cells following treatment for 6 h. The CdCl2 caused a significant decrease in viability (35.8±4.1%) and morphological distortion of the cells, compared with the untreated control cells; whereas 4 h pretreatment with FLE (5 µg/ml) reversed the Cd-induced morphology alteration and increased the cell viability to 102±3.8%. Genomic transcription analysis of the CdCl2 only-treated cells showed 61 upregulated and 124 downregulated genes, compared with 180 upregulated and 162 downregulated genes in the FLE pretreated cells. Furthermore, 37 and 26% of the affected total genomic genes in the CdCl2 only-treated cells were involved in binding and catalytic activities, respectively, whereas 50 and 20% of the genes in the FLE pretreated cells were involved in binding and catalytic activities, respectively. In conclusion, these results suggested that genome transcriptome modulation may be important in the protective effect of FLE against Cd-induced toxicity in normal rat liver cells.
Cell death discovery | 2018
Ramesh B. Badisa; Sungsool Wi; Zachary Jones; Elizabeth Mazzio; Yi Zhou; Jens T. Rosenberg; Lekan M. Latinwo; Samuel C. Grant; Carl B. Goodman
Cocaine is a highly abused drug that causes psychiatric and neurological problems. Its entry into neurons could alter cell-biochemistry and contribute in the manifestation of early pathological symptoms. We have previously shown the acute cocaine effects in rat C6 astroglia-like cells and found that these cells were highly sensitive to cocaine in terms of manifesting certain pathologies known to underlie psychological disorders. The present study was aimed to discern acute cocaine effects on the early onset of various changes in Neuro-2a (N2a) cells. Whole-cell patch-clamp recording of differentiated cells displayed the functional voltage-gated Na+ and K+ channels, which demonstrated the neuronal characteristics of the cells. Treatment of these cells with acute cocaine (1 h) at in vivo (nM to μM) and in vitro (mM) concentrations revealed that the cells remained almost 100% viable. Cocaine administration at 6.25 μM or 4 mM doses significantly reduced the inward currents but had no significant effect on outward currents, indicating the Na+ channel-blocking activity of cocaine. While no morphological change was observed at in vivo doses, treatment at in vitro doses altered the morphology, damaged the neurites, and induced cytoplasmic vacuoles; furthermore, general mitochondrial activity and membrane potential were significantly decreased. Mitochondrial dysfunction enabled the cells switch to anaerobic glycolysis, evidenced by dose-dependent increases in lactate and H2S, resulting unaltered ATP level in the cells. Further investigation on the mechanism of action unfolded that the cell’s resistance to cocaine was through the activation of nuclear factor E2-related factor-2 (Nrf-2) gene and subsequent increase of antioxidants (glutathione [GSH], catalase and GSH peroxidase [GPx]). The data clearly indicate that the cells employed a detoxifying strategy against cocaine. On a broader perspective, we envision that extrapolating the knowledge of neuronal resistance to central nervous system (CNS) diseases could delay their onset or progression.
Oncotarget | 2016
Augustine T. Nkembo; Elizabeth Ntantie; Olufisayo O. Salako; Felix Amissah; Rosemary A. Poku; Lekan M. Latinwo; Nazarius S. Lamango
Angiogenesis is essential for solid tumor growth, therapeutic resistance and metastasis, the latest accounting for 90% of cancer deaths. Although angiogenesis is essential for the malignant transformations in solid tumors and therefore is an attractive target, few drugs are available that block tumor angiogenesis. The focus has been to block signaling by receptor tyrosine kinases (RTKs), such as for vascular endothelial growth factor (VEGF), whose activation abrogate apoptosis and promote angiogenesis. The polyisoprenylated cysteinyl amide inhibitors (PCAIs) were designed to modulate aberrant polyisoprenylated small G-proteins such as mutant Ras whose constitutive activation promotes RTKs signaling. Since polyisoprenylation is essential for protein-protein interactions and functions of G-proteins, we hypothesized that the PCAIs would disrupt the monomeric G-protein signaling thereby effectively inhibiting angiogenesis. In this study we determined the effects of PCAIs on human umbilical vein endothelial cells (HUVEC) tube formation, cell viability, cell migration and invasion as well as in vivo using the chick chorioallantoic membrane (CAM) and zebrafish models. At sub- to low micromolar concentrations, the PCAIs inhibit the native and VEGF-stimulated cell migration and invasion as well as tube formation and angiogenesis in CAM and zebrafish embryos. The concentrations that block the angiogenic processes were lower than those that induce cell death. Since angiogenesis is essential for tumor growth but otherwise limited to wound healing, feeding fat cells and uterine wall repair in adults, it is conceivable that these compounds can be developed into safer therapeutics for cancers and retinal neovascularization that leads to loss of vision.