Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lelun Jiang is active.

Publication


Featured researches published by Lelun Jiang.


Sensors | 2016

Fabrication of Micro-Needle Electrodes for Bio-Signal Recording by a Magnetization-Induced Self-Assembly Method

Keyun Chen; Lei Ren; Zhipeng Chen; Chengfeng Pan; Wei Zhou; Lelun Jiang

Micro-needle electrodes (MEs) have attracted more and more attention for monitoring physiological electrical signals, including electrode-skin interface impedance (EII), electromyography (EMG) and electrocardiography (ECG) recording. A magnetization-induced self-assembling method (MSM) was developed to fabricate a microneedle array (MA). A MA coated with Ti/Au film was assembled as a ME. The fracture and insertion properties of ME were tested by experiments. The bio-signal recording performance of the ME was measured and compared with a typical commercial wet electrode (Ag/AgCl electrode). The results show that the MA self-assembled from the magnetic droplet array under the sum of gravitational surface tension and magnetic potential energies. The ME had good toughness and could easily pierce rabbit skin without being broken or buckling. When the compression force applied on the ME was larger than 2 N, ME could stably record EII, which was a lower value than that measured by Ag/AgCl electrodes. EMG signals collected by ME varied along with the contraction of biceps brachii muscle. ME could record static ECG signals with a larger amplitude and dynamic ECG signals with more distinguishable features in comparison with a Ag/AgCl electrode, therefore, ME is an alternative electrode for bio-signal monitoring in some specific situations.


Sensors | 2016

Fabrication of a Micro-Needle Array Electrode by Thermal Drawing for Bio-Signals Monitoring

Lei Ren; Qing Jiang; Keyun Chen; Zhipeng Chen; Chengfeng Pan; Lelun Jiang

A novel micro-needle array electrode (MAE) fabricated by thermal drawing and coated with Ti/Au film was proposed for bio-signals monitoring. A simple and effective setup was employed to form glassy-state poly (lactic-co-glycolic acid) (PLGA) into a micro-needle array (MA) by the thermal drawing method. The MA was composed of 6 × 6 micro-needles with an average height of about 500 μm. Electrode-skin interface impedance (EII) was recorded as the insertion force was applied on the MAE. The insertion process of the MAE was also simulated by the finite element method. Results showed that MAE could insert into skin with a relatively low compression force and maintain stable contact impedance between the MAE and skin. Bio-signals, including electromyography (EMG), electrocardiography (ECG), and electroencephalograph (EEG) were also collected. Test results showed that the MAE could record EMG, ECG, and EEG signals with good fidelity in shape and amplitude in comparison with the commercial Ag/AgCl electrodes, which proves that MAE is an alternative electrode for bio-signals monitoring.


PLOS ONE | 2017

Fabrication of a Ti porous microneedle array by metal injection molding for transdermal drug delivery

Jiyu Li; Bin Liu; Yingying Zhou; Zhipeng Chen; Lelun Jiang; Wei Yuan; Liang Liang

Microneedle arrays (MA) have been extensively investigated in recent decades for transdermal drug delivery due to their pain-free delivery, minimal skin trauma, and reduced risk of infection. However, porous MA received relatively less attention due to their complex fabrication process and ease of fracturing. Here, we present a titanium porous microneedle array (TPMA) fabricated by modified metal injection molding (MIM) technology. The sintering process is simple and suitable for mass production. TPMA was sintered at a sintering temperature of 1250°C for 2 h. The porosity of TPMA was approximately 30.1% and its average pore diameter was about 1.3 μm. The elements distributed on the surface of TPMA were only Ti and O, which may guarantee the biocompatibility of TPMA. TPMA could easily penetrate the skin of a human forearm without fracture. TPMA could diffuse dry Rhodamine B stored in micropores into rabbit skin. The cumulative permeated flux of calcein across TPMA with punctured skin was 27 times greater than that across intact skin. Thus, TPMA can continually and efficiently deliver a liquid drug through open micropores in skin.


Transactions of Nonferrous Metals Society of China | 2014

Design and fabrication of sintered wick for miniature cylindrical heat pipe

Lelun Jiang; Yong Tang; Wei Zhou; Lin-zhen Jiang; Tan Xiao; Yan Li; Jinwu Gao

Miniature cylindrical metal powder sintered wick heat pipe (sintered heat pipe) is an ideal component with super-high thermal efficiency for high heat flux electronics cooling. The sintering process for sintered wick is important for its quality. The sintering process was optimally designed based on the equation of the heat transfer limit of sintered heat pipe. Four-step sintering process was proposed to fabricate sintered wick. The sintering parameters including sintering temperature, sintering time, sintering atmosphere and sintering position were discussed. The experimental results showed that the proper sintering temperature was 950 °C for Cu powder of 159 μm and 900 °C for Cu powders of 81 and 38 μm, respectively, while the wick thickness was 0.45 mm and sintering time was 3 h. The optimized sintering time was 3 h for 0.45 and 0.6 mm wick thickness and 1 h for 0.75 mm wick thickness, respectively, when copper powder diameter was 159 μm and sintering temperature was 950 °C. Redox reduction reaction between H2 and CuO during sintering could produce segmentation cracks in Cu powders as a second structure. Sintering at vertical position can effectively avoid the generation of gap between wick and the inner wall of pipe.


Acta Biomaterialia | 2018

Rapid fabrication of microneedles using magnetorheological drawing lithography

Zhipeng Chen; Lei Ren; Jiyu Li; Lebin Yao; Yan Chen; Bin Liu; Lelun Jiang

Microneedles are micron-sized needles that are widely applied in biomedical fields owing to their painless, minimally invasive, and convenient operation. However, most microneedle fabrication approaches are costly, time consuming, involve multiple steps, and require expensive equipment. In this study, we present a novel magnetorheological drawing lithography (MRDL) method to efficiently fabricate microneedle, bio-inspired microneedle, and molding-free microneedle array. With the assistance of an external magnetic field, the 3D structure of a microneedle can be directly drawn from a droplet of curable magnetorheological fluid. The formation process of a microneedle consists of two key stages, elasto-capillary self-thinning and magneto-capillary self-shrinking, which greatly affect the microneedle height and tip radius. Penetration and fracture tests demonstrated that the microneedle had sufficient strength and toughness for skin penetration. Microneedle arrays and a bio-inspired microneedle were also fabricated, which further demonstrated the versatility and flexibility of the MRDL method. STATEMENT OF SIGNIFICANCE Microneedles have been widely applied in biomedical fields owing to their painless, minimally invasive, and convenient operation. However, most microneedle fabrication approaches are costly, time consuming, involve multiple steps, and require expensive equipment. Furthermore, most researchers have focused on the biomedical applications of microneedles but have given little attention to the optimization of the fabrication process. This research presents a novel magnetorheological drawing lithography (MRDL) method to fabricate microneedle, bio-inspired microneedle, and molding-free microneedle array. In this proposed technique, a droplet of curable magnetorheological fluid (CMRF) is drawn directly from almost any substrate to produce a 3D microneedle under an external magnetic field. This method not only inherits the advantages of thermal drawing approach without the need for a mask and light irradiation but also eliminates the requirement for drawing temperature adjustment. The MRDL method is extremely simple and can even produce the complex and multiscale structure of bio-inspired microneedle.


Journal of Bionic Engineering | 2016

Insertion and Pull Behavior of Worker Honeybee Stinger

Jintian Ling; Lelun Jiang; Keyun Chen; Chengfeng Pan; Yan Li; Wei Yuan; Liang Liang

Worker honeybee pierces animal or human skin with its ultra-sharp stinger and injects venom to defend itself. The insertion behavior is a painless transdermal drug delivery process. In this study, Apis cerana cerana worker honeybee was chosen as the research object. The geometry and structure of the stinger were observed by the Scanning Electron Microscope (SEM). High-speed video imaging technique was adopted to observe the stinger insertion and pull behavior of honeybee. The skin insertion, pull-out, in-plane buckling and out-of-plane bending forces of honeybee stinger were tested by a self-developed mechanical loading equipment. Results showed that the honeybee stinger pierces directly into skin without frequent vibration. The pull-out force (average 136.04 mN) was two orders of magnitude higher than the penetration force (average 1.34mN). Compared with the penetration force, the in-plane buckling force (average 6.72 mN) was in the same order of magnitude. The result of out-of-plane bending test showed that the stinger was elastic and it could recover after bending. The excellent geometry and structure of honeybee stinger will provide an inspiration for the further improved design of microneedle-based transdermal drug delivery system.


Journal of The Mechanical Behavior of Biomedical Materials | 2017

Effect of honeybee stinger and its microstructured barbs on insertion and pull force

Jintian Ling; Zhenhua Song; Jiarui Wang; Keyun Chen; Jiyu Li; Shujia Xu; Lei Ren; Zhipeng Chen; Dianwen Jin; Lelun Jiang

Worker honeybee is well-known for its stinger with microscopic backward-facing barbs for self-defense. The natural geometry of the stinger enables painless penetration and adhesion in the human skin to deliver poison. In this study, Apis cerana worker honeybee stinger and acupuncture microneedle (as a barbless stinger) were characterized by Scanning Electron Microscope (SEM). The insertion and pull process of honeybee stinger into rabbit skin was performed by a self-developed mechanical loading equipment in comparison with acupuncture needle. In order to better understand the insertion and pull mechanisms of the stinger and its barbs in human multilayer skin, a nonlinear finite element method (FEM) was conducted. Experimental results showed that the average pull-out force of the stinger was 113.50mN and the average penetration force was only 5.75mN. The average penetration force of the stinger was about one order of magnitude smaller than that of an acupuncture microneedle while the average pull-out force was about 70 times larger than that of an acupuncture microneedle. FEM results showed that the stress concentrations were around the stinger tip and its barbs during the insertion process. The barbs were jammed in and torn the skin during the pull process. The insertion force of the stinger was greatly minimized due to its ultrasharp stinger tip and barbs while the pull force was seriously enhanced due to the mechanical interlocking of the barbs in the skin. These excellent properties are mainly a result of optimal geometry evolved by nature. Such finding may provide an inspiration for the further design of improved tissue adhesives and micro-needles for painless transdermal drug delivery and bio-signal recording.


Nanomaterials | 2017

Fabrication of Magnetic Nanofibers by Needleless Electrospinning from a Self-Assembling Polymer Ferrofluid Cone Array

Weilong Huang; Bin Liu; Zhipeng Chen; Hongjian Wang; Lei Ren; Jiaming Jiao; Lin Zhuang; Jie Luo; Lelun Jiang

Magnetic nanofiber has been widely applied in biomedical fields due to its distinctive size, morphology, and properties. We proposed a novel needleless electrospinning method to prepare magnetic nanofibers from the self-assembling “Taylor cones” of poly(vinyl pyrrolidone) (PVP)/Fe3O4 ferrofluid (PFF) under the coincident magnetic and electric fields. The results demonstrated that a static PFF Rosensweig instability with a conical protrusion could be obtained under the magnetic field. The tip of the protrusion emitted an electrospinning jet under the coincident magnetic and electric fields. The needleless electrospinning showed a similar process phenomenon in comparison with conventional electrospinning. The prepared nanofibers were composed of Fe3O4 particles and PVP polymer. The Fe3O4 particles aggregated inside and on the surface of the nanofibers. The nanofibers prepared by needleless electrospinning exhibited similar morphology compared with the conventionally electrospun nanofibers. The nanofibers also exhibited good ferromagnetic and magnetic field responsive properties.


Transactions of Nonferrous Metals Society of China | 2013

Fabrication of flatten grooved-sintered wick heat pipe

Lelun Jiang; Yong Tang; Wei Zhou; Lin-zhen Jiang; Long-sheng Lu

Abstract With the rapid rising of heat flux and reduction of heat dissipating space of microelectronic devises, flattened sintered heat pipe has become an ideal conducting element of use in the electronic cooling field. A manufacturing technology named phase change flattening process is presented to fabricate the flattened grooved-sintered wick heat pipe (GSHP for short). Deformation geometry of flattened GSHP and the elasto-plastic deformation of flattening process are analyzed theoretically and verified by experiments. The results show that the vapor pressure inside sintered heat pipe during flattening process is determined by the saturated vapor pressure equation; the width and vapor area of flattened heat pipe change greatly as the flattening proceeds; the maximum equivalent strain distributes at the interface between wick and vapor in the flat section; the buckling phenomenon can be well eliminated when the flattening temperature reaches 480 K; phase change flattening punch load increases with flattening temperature and displacement.


Sensors | 2018

Fabrication of Composite Microneedle Array Electrode for Temperature and Bio-Signal Monitoring

Yiwei Sun; Lei Ren; Lelun Jiang; Yong Tang; Bin Liu

Body temperature and bio-signals are important health indicators that reflect the human health condition. However, monitoring these indexes is inconvenient and time-consuming, requires various instruments, and needs professional skill. In this study, a composite microneedle array electrode (CMAE) was designed and fabricated. It simultaneously detects body temperature and bio-signals. The CMAE consists of a 6 × 6 microneedles array with a height of 500 μm and a base diameter of 200 μm. Multiple insertion experiments indicate that the CMAE possesses excellent mechanical properties. The CMAE can pierce porcine skin 100 times without breaking or bending. A linear calibration relationship between temperature and voltage are experimentally obtained. Armpit temperature (35.8 °C) and forearm temperature (35.3 °C) are detected with the CMAE, and the measurements agree well with the data acquired with a clinical thermometer. Bio-signals including EII, ECG, and EMG are recorded and compared with those obtained by a commercial Ag/AgCl electrode. The CMAE continuously monitors bio-signals and is more convenient to apply because it does not require skin preparation and gel usage. The CMAE exhibits good potential for continuous and repetitive monitoring of body temperature and bio-signals.

Collaboration


Dive into the Lelun Jiang's collaboration.

Top Co-Authors

Avatar

Lei Ren

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Zhou

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Bin Liu

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Yong Tang

South China University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keyun Chen

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Liang Liang

South China University of Technology

View shared research outputs
Top Co-Authors

Avatar

Shujia Xu

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge