Lemlem Alemu
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lemlem Alemu.
Leukemia | 2015
R K Hyde; Ling Zhao; Lemlem Alemu; Pu Paul Liu
CBFβ-SMMHC (core-binding factor β-smooth muscle myosin heavy chain), the fusion protein generated by the chromosome 16 inversion fusion gene, CBFB-MYH11, is known to initiate leukemogenesis. However, the mechanism through which CBFβ-SMMHC contributes to leukemia development is not well understood. Previously, it was proposed that CBFβ-SMMHC acts by dominantly repressing the transcription factor RUNX1 (Runt-related protein 1), but we recently showed that CBFβ-SMMHC has activities that are independent of RUNX1 repression. In addition, we showed that a modified CBFβ-SMMHC with decreased RUNX1-binding activity accelerates leukemogenesis. These results raise questions about the importance of RUNX1 in leukemogenesis by CBFβ-SMMHC. To test this, we generated mice expressing Cbfb-MYH11 in a Runx1-deficient background, resulting from either homozygous Runx1-null alleles (Runx1−/−) or a single dominant-negative Runx1 allele (Runx1+/lz). We found that loss of Runx1 activity rescued the differentiation defects induced by Cbfb-MYH11 during primitive hematopoiesis. During definitive hematopoiesis, RUNX1 loss also significantly reduced the proliferation and differentiation defects induced by Cbfb-MYH11. Importantly, Cbfb-MYH11-induced leukemia had much longer latency in Runx1+/lz mice than in Runx1-sufficient mice. These data indicate that Runx1 activity is critical for Cbfb-MYH11-induced hematopoietic defects and leukemogenesis.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Lea Cunningham; Steven M. Finckbeiner; R. Katherine Hyde; Noel Southall; Juan J. Marugan; Venkat S. R. K. Yedavalli; Seameen Dehdashti; William C. Reinhold; Lemlem Alemu; Ling Zhao; Jing-Ruey J. Yeh; Raman Sood; Yves Pommier; Christopher P. Austin; Kuan-Teh Jeang; Wei Zheng; Paul Liu
Core binding factor (CBF) leukemias, those with translocations or inversions that affect transcription factor genes RUNX1 or CBFB, account for ∼24% of adult acute myeloid leukemia (AML) and 25% of pediatric acute lymphocytic leukemia (ALL). Current treatments for CBF leukemias are associated with significant morbidity and mortality, with a 5-y survival rate of ∼50%. We hypothesize that the interaction between RUNX1 and CBFβ is critical for CBF leukemia and can be targeted for drug development. We developed high-throughput AlphaScreen and time-resolved fluorescence resonance energy transfer (TR-FRET) methods to quantify the RUNX1–CBFβ interaction and screen a library collection of 243,398 compounds. Ro5-3335, a benzodiazepine identified from the screen, was able to interact with RUNX1 and CBFβ directly, repress RUNX1/CBFB-dependent transactivation in reporter assays, and repress runx1-dependent hematopoiesis in zebrafish embryos. Ro5-3335 preferentially killed human CBF leukemia cell lines, rescued preleukemic phenotype in a RUNX1–ETO transgenic zebrafish, and reduced leukemia burden in a mouse CBFB–MYH11 leukemia model. Our data thus confirmed that RUNX1–CBFβ interaction can be targeted for leukemia treatment and we have identified a promising lead compound for this purpose.
Blood | 2012
Ling Zhao; J. Joseph Melenhorst; Lemlem Alemu; Martha Kirby; Stasia A. Anderson; Kench M; Shelley Hoogstraten-Miller; Brinster L; Yasuhiko Kamikubo; Gilliland Dg; Pu Paul Liu
KIT mutations are the most common secondary mutations in inv(16) acute myeloid leukemia (AML) patients and are associated with poor prognosis. It is therefore important to verify that KIT mutations cooperate with CBFB-MYH11, the fusion gene generated by inv(16), for leukemogenesis. Here, we transduced wild-type and conditional Cbfb-MYH11 knockin (KI) mouse bone marrow (BM) cells with KIT D816V/Y mutations. KIT transduction caused massive BM Lin(-) cell death and fewer colonies in culture that were less severe in the KI cells. D816Y KIT but not wild-type KIT enhanced proliferation in Lin(-) cells and led to more mixed lineage colonies from transduced KI BM cells. Importantly, 60% and 80% of mice transplanted with KI BM cells expressing D816V or D816Y KIT, respectively, died from leukemia within 9 months, whereas no control mice died. Results from limiting dilution transplantations indicate higher frequencies of leukemia-initiating cells in the leukemia expressing mutated KIT. Signaling pathway analysis revealed that p44/42 MAPK and Stat3, but not AKT and Stat5, were strongly phosphorylated in the leukemia cells. Finally, leukemia cells carrying KIT D816 mutations were sensitive to the kinase inhibitor PKC412. Our data provide clear evidence for cooperation between mutated KIT and CBFB-MYH11 during leukemogenesis.
Blood | 2010
R. Katherine Hyde; Yasuhiko Kamikubo; Stacie M. Anderson; Martha Kirby; Lemlem Alemu; Ling Zhao; P. Paul Liu
It is known that CBFB-MYH11, the fusion gene generated by inversion of chromosome 16 in human acute myeloid leukemia, is causative for oncogenic transformation. However, the mechanism by which CBFB-MYH11 initiates leukemogenesis is not clear. Previously published reports showed that CBFB-MYH11 dominantly inhibits RUNX1 and CBFB, and such inhibition has been suggested as the mechanism for leukemogenesis. Here we show that Cbfb-MYH11 caused Cbfb/Runx1 repression-independent defects in both primitive and definitive hematopoiesis. During primitive hematopoiesis, Cbfb-MYH11 delayed differentiation characterized by sustained expression of Gata2, Il1rl1, and Csf2rb, a phenotype not found in Cbfb and Runx1 knockout mice. Expression of Cbfb-MYH11 in the bone marrow induced the accumulation of abnormal progenitor-like cells expressing Csf2rb in preleukemic mice. The expression of all 3 genes was detected in most human and murine CBFB-MYH11(+) leukemia samples. Interestingly, Cbfb-MYH11(+) preleukemic progenitors and leukemia-initiating cells did not express Csf2rb, although the majority of leukemia cells in our Cbfb-MYH11 knockin mice were Csf2rb(+). Therefore Csf2rb can be used as a negative selection marker to enrich preleukemic progenitor cells and leukemia-initiating cells from Cbfb-MYH11 mice. These results suggest that Cbfb/Runx1 repression-independent activities contribute to leukemogenesis by Cbfb-MYH11.
Blood | 2013
Yasuhiko Kamikubo; R. Katherine Hyde; Ling Zhao; Lemlem Alemu; Cecilia Rivas; Lisa Garrett; P. Paul Liu
The C-terminus of CBFβ-SMMHC, the fusion protein produced by a chromosome 16 inversion in acute myeloid leukemia subtype M4Eo, contains domains for self-multimerization and transcriptional repression, both of which have been proposed to be important for leukemogenesis by CBFβ-SMMHC. To test the role of the fusion proteins C-terminus in vivo, we generated knock-in mice expressing a C-terminally truncated CBFβ-SMMHC (CBFβ-SMMHCΔC95). Embryos with a single copy of CBFβ-SMMHCΔC95 were viable and showed no defects in hematopoiesis, whereas embryos homozygous for the CBFβ-SMMHCΔC95 allele had hematopoietic defects and died in mid-gestation, similar to embryos with a single-copy of the full-length CBFβ-SMMHC. Importantly, unlike mice expressing full-length CBFβ-SMMHC, none of the mice expressing CBFβ-SMMHCΔC95 developed leukemia, even after treatment with a mutagen, although some of the older mice developed a nontransplantable myeloproliferative disease. Our data indicate that the CBFβ-SMMHCs C-terminus is essential to induce embryonic hematopoietic defects and leukemogenesis.
Leukemia | 2017
Ling Zhao; H Alkadi; Erika Mijin Kwon; Tao Zhen; J Lichtenberg; Lemlem Alemu; Jun Cheng; A D Friedman; Pu Paul Liu
The C-terminal multimerization domain is essential for leukemia development by CBFβ-SMMHC in a mouse knockin model
Cancer Research | 2013
Ling Zhao; R. Katherine Hyde; Lemlem Alemu; P. Paul Liu
Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC Chromosome 16 inversion is associated with acute myeloid leukemia subtype M4Eo and produces a fusion gene CBFB-MYH11 that contains part of the core binding factor (CBF) β gene CBFB, and part of the smooth muscle myosin heavy chain (SMMHC) gene MYH11. This fusion gene encodes a fusion protein CBFβ-SMMHC, which is oncogenic and binds to the runt domain (RD) of RUNX1, another member of the CBF transcription factor family, resulting in repression of RUNX1 transactivation. We have generated mouse models by conventional and conditional knock-in of the Cbfb-MYH11 fusion gene and demonstrated that Cbfb-MYH11 represses Runx1 function in hematopoiesis and predisposes mice to myeloid leukemia (Castilla et. al., Cell 1996; Nat Genet, 1999). RUNX1 binding and repression was previously considered a key step in leukemogenesis by CBFβ-SMMHC. In order to dissect the molecular mechanism of RUNX1 and CBFβ-SMMHC interaction during leukemogenesis, we generated a knock-in mouse model with deleted high affinity binding site of Cbfb-MYH11. We found accelerated leukemia development in these mice (Kamikubo et.al., Cancer cell, 2010) suggesting that Cbfb-MYH11 play an independent role apart from Runx1 binding and repression. To test if Runx1 is involved in the leukemia development and progression, we crossed Cbfb-MYH11 knock-in mice with mice harboring one of the two mutant alleles of Runx1 - Runx1+/- and Runx1+/Lzd. Runx1+/- contains a null allele while Runx1+/Lzd contains a knocked-in fusion between the RD of Runx1 and the LacZ gene, which is partially dominant-negative in reporter assays. We have determined the rate and percentage of leukemia development in these mice. We found that the Cbfb-MYH11 mice that were Runx1+/- had a similar rate of leukemogenesis when compared with Cbfb-MYH11 mice that were Runx1+/+. However, the Cbfb-MYH11 mice that were Runx1+/Lzd had significantly delayed leukemogenesis as compared to Cbfb-MYH11 mice that were Runx1+/+. Moreover, some of the Cbfb-MYH11; Runx1+/Lzd mice did not develop leukemia at the end of the one-year observation. We detected a decrease of BrdU incorporation in the bone marrow cells in mice with the Runx1+/Lzd allele, suggesting that the delayed leukemia development resulted, at least in part, from decreased proliferation. These data demonstrated that Runx1 is likely required for leukemogenesis by CBFβ-SMMHC. Citation Format: Ling Zhao, R Katherine Hyde, Lemlem Alemu, P Paul Liu. The interaction of RUNX1 with CBFβ-SMMHC during leukemogenesis. [abstract]. In: Proceedings of the 104th Annual Meeting of the American Association for Cancer Research; 2013 Apr 6-10; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2013;73(8 Suppl):Abstract nr 3850. doi:10.1158/1538-7445.AM2013-3850
Blood | 2017
Tao Zhen; Erika M. Kwon; Ling Zhao; Jingmei Hsu; R. Katherine Hyde; Ying Lu; Lemlem Alemu; Nancy A. Speck; P. Paul Liu
Blood | 2009
Ling Zhao; J. Joseph Melenhorst; Lemlem Alemu; Martha Kirby; Stacie M. Anderson; Shelley Hoogstraten-Miller; Yasuhiko Kamikubo; D. Gary Gilliland; Pu Paul Liu
Blood | 2008
R. Katherine Hyde; Yasuhiko Kamikubo; Lemlem Alemu; Ling Zhao; Chenwei Wang; Pu Paul Liu