Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lena Backlund is active.

Publication


Featured researches published by Lena Backlund.


Molecular Psychiatry | 2012

Genome-wide association study in a Swedish population yields support for greater CNV and MHC involvement in schizophrenia compared with bipolar disorder

Sarah E. Bergen; Colm O'Dushlaine; Stephan Ripke; Phil H. Lee; Douglas M. Ruderfer; Susanne Akterin; Jennifer L. Moran; Robert E. Handsaker; Lena Backlund; Urban Ösby; Steven A. McCarroll; Mikael Landén; Edward M. Scolnick; Patrik K. E. Magnusson; Paul Lichtenstein; Christina M. Hultman; Shaun Purcell; Pamela Sklar; Patrick F. Sullivan

Schizophrenia (SCZ) and bipolar disorder (BD) are highly heritable psychiatric disorders with overlapping susceptibility loci and symptomatology. We conducted a genome-wide association study (GWAS) of these disorders in a large Swedish sample. We report a new and independent case–control analysis of 1507 SCZ cases, 836 BD cases and 2093 controls. No single-nucleotide polymorphisms (SNPs) achieved significance in these new samples; however, combining new and previously reported SCZ samples (2111 SCZ and 2535 controls) revealed a genome-wide significant association in the major histocompatibility complex (MHC) region (rs886424, P=4.54 × 10−8). Imputation using multiple reference panels and meta-analysis with the Psychiatric Genomics Consortium SCZ results underscored the broad, significant association in the MHC region in the full SCZ sample. We evaluated the role of copy number variants (CNVs) in these subjects. As in prior reports, deletions were enriched in SCZ, but not BD cases compared with controls. Singleton deletions were more frequent in both case groups compared with controls (SCZ: P=0.003, BD: P=0.013), whereas the largest CNVs (>500 kb) were significantly enriched only in SCZ cases (P=0.0035). Two CNVs with previously reported SCZ associations were also overrepresented in this SCZ sample: 16p11.2 duplications (P=0.0035) and 22q11 deletions (P=0.03). These results reinforce prior reports of significant MHC and CNV associations in SCZ, but not BD.


Translational Psychiatry | 2013

Long-term lithium treatment in bipolar disorder is associated with longer leukocyte telomeres

Lina Martinsson; Ya Bin Wei; Dawei Xu; Philippe A. Melas; Aleksander A. Mathé; Martin Schalling; Catharina Lavebratt; Lena Backlund

Telomere shortening is a hallmark of aging and has been associated with oxidative stress, inflammation and chronic somatic, as well as psychiatric disorders, including schizophrenia and depression. Additionally, antidepressants have been found to protect against telomere shortening. However, pharmacological telomere studies are lacking in bipolar disorder (BD). Therefore, the objective of this study was to explore telomere length (TL) in patients with BD in the context of lithium treatment. We determined TL by quantitative real-time PCR using peripheral blood leukocytes. Participants were outpatients diagnosed with BD type 1 or 2 (n=256) and healthy controls (n=139). Retrospective case–control and case–case study designs were applied. Lithium response (LiR) was scored using the Alda-Scale. Lithium-treated BD patients overall, as well as those on lithium monotherapy, had 35% longer telomeres compared with controls (P<0.0005, partial η2=0.13). TL correlated positively with lithium treatment duration of >30 months (P=0.031, R2=0.13) and was negatively associated with increasing number of depressive episodes (P<0.007). BD patients responding well to lithium treatment had longer telomeres than those not responding well. This is the first study to report a positive effect of long-term lithium treatment on TL. Importantly, longer TL was also associated with a better LiR in BD patients. These data suggest that lithium exerts a protective effect against telomere shortening especially when therapeutically efficacious. We hypothesize that induction of telomerase activity may be involved in LiR in BD.


PLOS ONE | 2013

Assessment of Response to Lithium Maintenance Treatment in Bipolar Disorder: A Consortium on Lithium Genetics (ConLiGen) Report

Mirko Manchia; Mazda Adli; Nirmala Akula; Raffaella Ardau; Jean-Michel Aubry; Lena Backlund; Cláudio E. M. Banzato; Bernhard T. Baune; Frank Bellivier; Susanne A. Bengesser; Joanna M. Biernacka; Clara Brichant-Petitjean; Elise Bui; Cynthia V. Calkin; Andrew Cheng; Caterina Chillotti; Sven Cichon; Scott R. Clark; Piotr M. Czerski; Clarissa de Rosalmeida Dantas; Maria Del Zompo; J. Raymond DePaulo; Sevilla D. Detera-Wadleigh; Bruno Etain; Peter Falkai; Louise Frisén; Mark A. Frye; Janice M. Fullerton; Sébastien Gard; Julie Garnham

Objective The assessment of response to lithium maintenance treatment in bipolar disorder (BD) is complicated by variable length of treatment, unpredictable clinical course, and often inconsistent compliance. Prospective and retrospective methods of assessment of lithium response have been proposed in the literature. In this study we report the key phenotypic measures of the “Retrospective Criteria of Long-Term Treatment Response in Research Subjects with Bipolar Disorder” scale currently used in the Consortium on Lithium Genetics (ConLiGen) study. Materials and Methods Twenty-nine ConLiGen sites took part in a two-stage case-vignette rating procedure to examine inter-rater agreement [Kappa (κ)] and reliability [intra-class correlation coefficient (ICC)] of lithium response. Annotated first-round vignettes and rating guidelines were circulated to expert research clinicians for training purposes between the two stages. Further, we analyzed the distributional properties of the treatment response scores available for 1,308 patients using mixture modeling. Results Substantial and moderate agreement was shown across sites in the first and second sets of vignettes (κ = 0.66 and κ = 0.54, respectively), without significant improvement from training. However, definition of response using the A score as a quantitative trait and selecting cases with B criteria of 4 or less showed an improvement between the two stages (ICC1 = 0.71 and ICC2 = 0.75, respectively). Mixture modeling of score distribution indicated three subpopulations (full responders, partial responders, non responders). Conclusions We identified two definitions of lithium response, one dichotomous and the other continuous, with moderate to substantial inter-rater agreement and reliability. Accurate phenotypic measurement of lithium response is crucial for the ongoing ConLiGen pharmacogenomic study.


Molecular Psychiatry | 2014

The KMO allele encoding Arg 452 is associated with psychotic features in bipolar disorder type 1, and with increased CSF KYNA level and reduced KMO expression

Catharina Lavebratt; Sara K. Olsson; Lena Backlund; Louise Frisén; Carl Sellgren; L Priebe; Pernilla Nikamo; Lil Träskman-Bendz; Sven Cichon; Marquis P. Vawter; Urban Ösby; Göran Engberg; Mikael Landén; Sophie Erhardt; Martin Schalling

The kynurenine pathway metabolite kynurenic acid (KYNA), modulating glutamatergic and cholinergic neurotransmission, is increased in cerebrospinal fluid (CSF) of patients with schizophrenia or bipolar disorder type 1 with psychotic features. KYNA production is critically dependent on kynurenine 3-monooxygenase (KMO). KMO mRNA levels and activity in prefrontal cortex (PFC) are reduced in schizophrenia. We hypothesized that KMO expression in PFC would be reduced in bipolar disorder with psychotic features and that a functional genetic variant of KMO would associate with this disease, CSF KYNA level and KMO expression. KMO mRNA levels were reduced in PFC of bipolar disorder patients with lifetime psychotic features (P=0.005, n=19) or schizophrenia (P=0.02, n=36) compared with nonpsychotic patients and controls. KMO genetic association to psychotic features in bipolar disorder type 1 was studied in 493 patients and 1044 controls from Sweden. The KMO Arg(452) allele was associated with psychotic features during manic episodes (P=0.003). KMO Arg(452) was studied for association to CSF KYNA levels in an independent sample of 55 Swedish patients, and to KMO expression in 717 lymphoblastoid cell lines and 138 hippocampal biopsies. KMO Arg(452) associated with increased levels of CSF KYNA (P=0.03) and reduced lymphoblastoid and hippocampal KMO expression (P≤0.05). Thus, findings from five independent cohorts suggest that genetic variation in KMO influences the risk for psychotic features in mania of bipolar disorder patients. This provides a possible mechanism for the previous findings of elevated CSF KYNA levels in those bipolar patients with lifetime psychotic features and positive association between KYNA levels and number of manic episodes.The kynurenine pathway metabolite kynurenic acid (KYNA), modulating glutamatergic and cholinergic neurotransmission, is increased in cerebrospinal fluid (CSF) of patients with schizophrenia or bipolar disorder type 1 with psychotic features. KYNA production is critically dependent on kynurenine 3-monooxygenase (KMO). KMO mRNA levels and activity in prefrontal cortex (PFC) are reduced in schizophrenia. We hypothesized that KMO expression in PFC would be reduced in bipolar disorder with psychotic features and that a functional genetic variant of KMO would associate with this disease, CSF KYNA level and KMO expression. KMO mRNA levels were reduced in PFC of bipolar disorder patients with lifetime psychotic features (P=0.005, n=19) or schizophrenia (P=0.02, n=36) compared with nonpsychotic patients and controls. KMO genetic association to psychotic features in bipolar disorder type 1 was studied in 493 patients and 1044 controls from Sweden. The KMO Arg452 allele was associated with psychotic features during manic episodes (P=0.003). KMO Arg452 was studied for association to CSF KYNA levels in an independent sample of 55 Swedish patients, and to KMO expression in 717 lymphoblastoid cell lines and 138 hippocampal biopsies. KMO Arg452 associated with increased levels of CSF KYNA (P=0.03) and reduced lymphoblastoid and hippocampal KMO expression (P⩽0.05). Thus, findings from five independent cohorts suggest that genetic variation in KMO influences the risk for psychotic features in mania of bipolar disorder patients. This provides a possible mechanism for the previous findings of elevated CSF KYNA levels in those bipolar patients with lifetime psychotic features and positive association between KYNA levels and number of manic episodes.


PLOS ONE | 2010

CRY2 is associated with rapid cycling in bipolar disorder patients.

Louise K. Sjöholm; Lena Backlund; Emarndeena Haji Cheteh; Inger Römer Ek; Louise Frisén; Martin Schalling; Urban Ösby; Catharina Lavebratt; Pernilla Nikamo

Background Bipolar disorder patients often display abnormalities in circadian rhythm, and they are sensitive to irregular diurnal rhythms. CRY2 participates in the core clock that generates circadian rhythms. CRY2 mRNA expression in blood mononuclear cells was recently shown to display a marked diurnal variation and to respond to total sleep deprivation in healthy human volunteers. It was also shown that bipolar patients in a depressive state had lower CRY2 mRNA levels, nonresponsive to total sleep deprivation, compared to healthy controls, and that CRY2 gene variation was associated with winter depression in both Swedish and Finnish cohorts. Principal Findings Four CRY2 SNPs spanning from intron 2 to downstream 3′UTR were analyzed for association to bipolar disorder type 1 (n = 497), bipolar disorder type 2 (n = 60) and bipolar disorder with the feature rapid cycling (n = 155) versus blood donors (n = 1044) in Sweden. Also, the rapid cycling cases were compared with bipolar disorder cases without rapid cycling (n = 422). The haplotype GGAC was underrepresented among rapid cycling cases versus controls and versus bipolar disorder cases without rapid cycling (OR = 0.7, P = 0.006−0.02), whereas overrepresentation among rapid cycling cases was seen for AAAC (OR = 1.3−1.4, P = 0.03−0.04) and AGGA (OR = 1.5, P = 0.05). The risk and protective CRY2 haplotypes and their effect sizes were similar to those recently suggested to be associated with winter depression in Swedes. Conclusions We propose that the circadian gene CRY2 is associated with rapid cycling in bipolar disorder. This is the first time a clock gene is implicated in rapid cycling, and one of few findings showing a molecular discrimination between rapid cycling and other forms of bipolar disorder.


The International Journal of Neuropsychopharmacology | 2015

Telomerase dysregulation in the hippocampus of a rat model of depression: normalization by lithium.

Ya Bin Wei; Lena Backlund; Gregers Wegener; Aleksander A. Mathé; Catharina Lavebratt

Background: Telomeres are protective DNA-protein complexes at the ends of each chromosome, maintained primarily by the enzyme telomerase. Shortening of the blood leukocyte telomeres is associated with aging, several chronic diseases, and stress, eg, major depression. Hippocampus is pivotal in the regulation of cognition and mood and the main brain region of telomerase activity. Whether there is telomere dysfunction in the hippocampus of depressed subjects is unknown. Lithium, used in the treatment and relapse prevention of mood disorders, was found to protect against leukocyte telomere shortening in humans, but the mechanism has not been elucidated. To answer the questions whether telomeres are shortened and the telomerase activity changed in the hippocampus and whether lithium could reverse the process, we used a genetic model of depression, the Flinders Sensitive Line rat, and treated the animals with lithium. Methods: Telomere length, telomerase reverse transcriptase (Tert) expression, telomerase activity, and putative mediators of telomerase activity were investigated in the hippocampus of these animals. Results: The naïve Flinders Sensitive Line had shorter telomere length, downregulated Tert expression, reduced brain-derived neurotrophic factor levels, and reduced telomerase activity compared with the Flinders Resistant Line controls. Lithium treatment normalized the Tert expression and telomerase activity in the Flinders Sensitive Line and upregulated β-catenin. Conclusion: This is the first report showing telomere dysregulation in hippocampus of a well-defined depression model and restorative effects of lithium treatment. If replicated in other models of mood disorder, the findings will contribute to understanding both the telomere function and the mechanism of lithium action in hippocampus of depressed patients.


Bipolar Disorders | 2011

Cognitive manic symptoms associated with the P2RX7 gene in bipolar disorder

Lena Backlund; Pernilla Nikamo; Dzana Sudic Hukic; Inger Römer Ek; Lil Träskman-Bendz; Mikael Landén; Gunnar Edman; Martin Schalling; Louise Frisén; Urban Ösby

Backlund L, Nikamo P, Sudic Hukic D, Römer EK I, Träskman‐Bendz L, Landén M, Edman G, Schalling M, Frisén L, Ösby U. Cognitive manic symptoms associated with the P2RX7 gene in bipolar disorder. Bipolar Disord 2011: 13: 500–508.


Translational Psychiatry | 2017

Evidence for genetic heterogeneity between clinical subtypes of bipolar disorder

Alexander Charney; Douglas M. Ruderfer; Eli A. Stahl; Jennifer L. Moran; Richard A. Belliveau; Liz Forty; Katherine Gordon-Smith; A. Di Florio; Phil H. Lee; Evelyn J. Bromet; Peter F. Buckley; Michael A. Escamilla; Ayman H. Fanous; Laura J. Fochtmann; Douglas S. Lehrer; Dolores Malaspina; Stephen R. Marder; Christopher P. Morley; Humberto Nicolini; Diana O. Perkins; Jeffrey J. Rakofsky; Mark Hyman Rapaport; Helena Medeiros; Janet L. Sobell; Elaine K. Green; Lena Backlund; Sarah E. Bergen; Anders Juréus; Martin Schalling; Paul Lichtenstein

We performed a genome-wide association study of 6447 bipolar disorder (BD) cases and 12 639 controls from the International Cohort Collection for Bipolar Disorder (ICCBD). Meta-analysis was performed with prior results from the Psychiatric Genomics Consortium Bipolar Disorder Working Group for a combined sample of 13 902 cases and 19 279 controls. We identified eight genome-wide significant, associated regions, including a novel associated region on chromosome 10 (rs10884920; P=3.28 × 10−8) that includes the brain-enriched cytoskeleton protein adducin 3 (ADD3), a non-coding RNA, and a neuropeptide-specific aminopeptidase P (XPNPEP1). Our large sample size allowed us to test the heritability and genetic correlation of BD subtypes and investigate their genetic overlap with schizophrenia and major depressive disorder. We found a significant difference in heritability of the two most common forms of BD (BD I SNP-h2=0.35; BD II SNP-h2=0.25; P=0.02). The genetic correlation between BD I and BD II was 0.78, whereas the genetic correlation was 0.97 when BD cohorts containing both types were compared. In addition, we demonstrated a significantly greater load of polygenic risk alleles for schizophrenia and BD in patients with BD I compared with patients with BD II, and a greater load of schizophrenia risk alleles in patients with the bipolar type of schizoaffective disorder compared with patients with either BD I or BD II. These results point to a partial difference in the genetic architecture of BD subtypes as currently defined.


PLOS ONE | 2012

P2RX7: Expression Responds to Sleep Deprivation and Associates with Rapid Cycling in Bipolar Disorder Type 1

Lena Backlund; Catharina Lavebratt; Louise Frisén; Pernilla Nikamo; Dzana Hukic Sudic; Lil Träskman-Bendz; Mikael Landén; Gunnar Edman; Marquis P. Vawter; Urban Ösby; Martin Schalling

Context Rapid cycling is a severe form of bipolar disorder with an increased rate of episodes that is particularly treatment-responsive to chronotherapy and stable sleep-wake cycles. We hypothesized that the P2RX7 gene would be affected by sleep deprivation and be implicated in rapid cycling. Objectives To assess whether P2RX7 expression is affected by total sleep deprivation and if variation in P2RX7 is associated with rapid cycling in bipolar patients. Design Gene expression analysis in peripheral blood mononuclear cells (PBMCs) from healthy volunteers and case-case and case-control SNP/haplotype association analyses in patients. Participants Healthy volunteers at the sleep research center, University of California, Irvine Medical Center (UCIMC), USA (n = 8) and Swedish outpatients recruited from specialized psychiatric clinics for bipolar disorder, diagnosed with bipolar disorder type 1 (n = 569; rapid cycling: n = 121) and anonymous blood donor controls (n = 1,044). Results P2RX7 RNA levels were significantly increased during sleep deprivation in PBMCs from healthy volunteers (p = 2.3*10−9). The P2RX7 rs2230912 _A allele was more common (OR = 2.2, p = 0.002) and the ACGTTT haplotype in P2RX7 (rs1718119 to rs1621388) containing the protective rs2230912_G allele (OR = 0.45–0.49, p = 0.003–0.005) was less common, among rapid cycling cases compared to non-rapid cycling bipolar patients and blood donor controls. Conclusions Sleep deprivation increased P2RX7 expression in healthy persons and the putatively low-activity P2RX7 rs2230912 allele A variant was associated with rapid cycling in bipolar disorder. This supports earlier findings of P2RX7 associations to affective disorder and is in agreement with that particularly rapid cycling patients have a more vulnerable diurnal system.


Molecular Psychiatry | 2016

A genome-wide association study of kynurenic acid in cerebrospinal fluid: implications for psychosis and cognitive impairment in bipolar disorder

Carl Sellgren; Magdalena E. Kegel; Sarah E. Bergen; C J Ekman; Sara K. Olsson; Markus K. Larsson; Marquis P. Vawter; Lena Backlund; Patrick F. Sullivan; Pamela Sklar; Jordan W. Smoller; Patrik K. E. Magnusson; C. M. Hultman; L Walther-Jallow; Camilla I. Svensson; Paul Lichtenstein; Martin Schalling; Göran Engberg; Sophie Erhardt; Mikael Landén

Elevated cerebrospinal fluid (CSF) levels of the glia-derived N-methyl-D-aspartic acid receptor antagonist kynurenic acid (KYNA) have consistently been implicated in schizophrenia and bipolar disorder. Here, we conducted a genome-wide association study based on CSF KYNA in bipolar disorder and found support for an association with a common variant within 1p21.3. After replication in an independent cohort, we linked this genetic variant—associated with reduced SNX7 expression—to positive psychotic symptoms and executive function deficits in bipolar disorder. A series of post-mortem brain tissue and in vitro experiments suggested SNX7 downregulation to result in a caspase-8-driven activation of interleukin-1β and a subsequent induction of the brain kynurenine pathway. The current study demonstrates the potential of using biomarkers in genetic studies of psychiatric disorders, and may help to identify novel drug targets in bipolar disorder.

Collaboration


Dive into the Lena Backlund's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Catharina Lavebratt

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge