Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lena F. Kourkoutis is active.

Publication


Featured researches published by Lena F. Kourkoutis.


Nature | 2010

A strong ferroelectric ferromagnet created by means of spin–lattice coupling

J. H. Lee; Lei Fang; Eftihia Vlahos; X. Ke; Young Woo Jung; Lena F. Kourkoutis; Jong-Woo Kim; Philip J. Ryan; M. Roeckerath; Margitta Bernhagen; Reinhard Uecker; P. Chris Hammel; Karin M. Rabe; S. Kamba; J. Schubert; J. W. Freeland; David A. Muller; Craig J. Fennie; P. Schiffer; Venkatraman Gopalan; Ezekiel Johnston-Halperin; Darrell G. Schlom

Ferroelectric ferromagnets are exceedingly rare, fundamentally interesting multiferroic materials that could give rise to new technologies in which the low power and high speed of field-effect electronics are combined with the permanence and routability of voltage-controlled ferromagnetism. Furthermore, the properties of the few compounds that simultaneously exhibit these phenomena are insignificant in comparison with those of useful ferroelectrics or ferromagnets: their spontaneous polarizations or magnetizations are smaller by a factor of 1,000 or more. The same holds for magnetic- or electric-field-induced multiferroics. Owing to the weak properties of single-phase multiferroics, composite and multilayer approaches involving strain-coupled piezoelectric and magnetostrictive components are the closest to application today. Recently, however, a new route to ferroelectric ferromagnets was proposed by which magnetically ordered insulators that are neither ferroelectric nor ferromagnetic are transformed into ferroelectric ferromagnets using a single control parameter, strain. The system targeted, EuTiO3, was predicted to exhibit strong ferromagnetism (spontaneous magnetization, ∼7 Bohr magnetons per Eu) and strong ferroelectricity (spontaneous polarization, ∼10 µC cm−2) simultaneously under large biaxial compressive strain. These values are orders of magnitude higher than those of any known ferroelectric ferromagnet and rival the best materials that are solely ferroelectric or ferromagnetic. Hindered by the absence of an appropriate substrate to provide the desired compression we turned to tensile strain. Here we show both experimentally and theoretically the emergence of a multiferroic state under biaxial tension with the unexpected benefit that even lower strains are required, thereby allowing thicker high-quality crystalline films. This realization of a strong ferromagnetic ferroelectric points the way to high-temperature manifestations of this spin–lattice coupling mechanism. Our work demonstrates that a single experimental parameter, strain, simultaneously controls multiple order parameters and is a viable alternative tuning parameter to composition for creating multiferroics.


Science | 2009

A Ferroelectric Oxide Made Directly on Silicon

Maitri P. Warusawithana; Cheng Cen; Charles R. Sleasman; J. C. Woicik; Yulan Li; Lena F. Kourkoutis; Jeffrey A. Klug; Hao Li; Philip J. Ryan; Li Peng Wang; Michael J. Bedzyk; David A. Muller; Long-Qing Chen; Jeremy Levy; Darrell G. Schlom

Metal oxide semiconductor field-effect transistors, formed using silicon dioxide and silicon, have undergone four decades of staggering technological advancement. With fundamental limits to this technology close at hand, alternatives to silicon dioxide are being pursued to enable new functionality and device architectures. We achieved ferroelectric functionality in intimate contact with silicon by growing coherently strained strontium titanate (SrTiO3) films via oxide molecular beam epitaxy in direct contact with silicon, with no interfacial silicon dioxide. We observed ferroelectricity in these ultrathin SrTiO3 layers by means of piezoresponse force microscopy. Stable ferroelectric nanodomains created in SrTiO3 were observed at temperatures as high as 400 kelvin.


Nano Letters | 2012

Atomic-Resolution Spectroscopic Imaging of Ensembles of Nanocatalyst Particles Across the Life of a Fuel Cell

Huolin L. Xin; Julia A. Mundy; Zhongyi Liu; Randi Cabezas; Robert Hovden; Lena F. Kourkoutis; Junliang Zhang; Nalini P. Subramanian; Rohit Makharia; Frederick T. Wagner; David A. Muller

The thousand-fold increase in data-collection speed enabled by aberration-corrected optics allows us to overcome an electron microscopy paradox: how to obtain atomic-resolution chemical structure in individual nanoparticles yet record a statistically significant sample from an inhomogeneous population. This allowed us to map hundreds of Pt-Co nanoparticles to show atomic-scale elemental distributions across different stages of the catalyst aging in a proton-exchange-membrane fuel cell, and relate Pt-shell thickness to treatment, particle size, surface orientation, and ordering.


Nature Communications | 2013

LaAlO 3 stoichiometry is key to electron liquid formation at LaAlO 3 /SrTiO 3 interfaces

Maitri P. Warusawithana; C. Richter; Julia A. Mundy; P. Roy; Jonathan Ludwig; S. Paetel; T. Heeg; A. A. Pawlicki; Lena F. Kourkoutis; Mao Zheng; M. Lee; B. Mulcahy; W. Zander; Ye Zhu; J. Schubert; James N. Eckstein; David A. Muller; C. Stephen Hellberg; J. Mannhart; D. G. Schlom

Emergent phenomena, including superconductivity and magnetism, found in the two-dimensional electron liquid (2-DEL) at the interface between the insulators lanthanum aluminate (LaAlO3) and strontium titanate (SrTiO3) distinguish this rich system from conventional 2D electron gases at compound semiconductor interfaces. The origin of this 2-DEL, however, is highly debated, with focus on the role of defects in the SrTiO3, while the LaAlO3 has been assumed perfect. Here we demonstrate, through experiments and first-principle calculations, that the cation stoichiometry of the nominal LaAlO3 layer is key to 2-DEL formation: only Al-rich LaAlO3 results in a 2-DEL. Although extrinsic defects, including oxygen deficiency, are known to render LaAlO3/SrTiO3 samples conducting, our results show that in the absence of such extrinsic defects an interface 2-DEL can form. Its origin is consistent with an intrinsic electronic reconstruction occurring to counteract a polarization catastrophe. This work provides insight for identifying other interfaces where emergent behaviours await discovery.


Nature | 2013

Exploiting dimensionality and defect mitigation to create tunable microwave dielectrics

Che Hui Lee; Nathan D. Orloff; Turan Birol; Ye Zhu; Eduard Rocas; Ryan Haislmaier; Eftihia Vlahos; Julia A. Mundy; Lena F. Kourkoutis; Yuefeng Nie; Michael D. Biegalski; Jingshu Zhang; Margitta Bernhagen; Nicole A. Benedek; Yongsam Kim; Joel D. Brock; Reinhard Uecker; Xiaoxing Xi; Venkatraman Gopalan; D. Nuzhnyy; S. Kamba; David A. Muller; Ichiro Takeuchi; James C. Booth; Craig J. Fennie; Darrell G. Schlom

The miniaturization and integration of frequency-agile microwave circuits—relevant to electronically tunable filters, antennas, resonators and phase shifters—with microelectronics offers tantalizing device possibilities, yet requires thin films whose dielectric constant at gigahertz frequencies can be tuned by applying a quasi-static electric field. Appropriate systems such as BaxSr1−xTiO3 have a paraelectric–ferroelectric transition just below ambient temperature, providing high tunability. Unfortunately, such films suffer significant losses arising from defects. Recognizing that progress is stymied by dielectric loss, we start with a system with exceptionally low loss—Srn+1TinO3n+1 phases—in which (SrO)2 crystallographic shear planes provide an alternative to the formation of point defects for accommodating non-stoichiometry. Here we report the experimental realization of a highly tunable ground state arising from the emergence of a local ferroelectric instability in biaxially strained Srn+1TinO3n+1 phases with n ≥ 3 at frequencies up to 125 GHz. In contrast to traditional methods of modifying ferroelectrics—doping or strain—in this unique system an increase in the separation between the (SrO)2 planes, which can be achieved by changing n, bolsters the local ferroelectric instability. This new control parameter, n, can be exploited to achieve a figure of merit at room temperature that rivals all known tunable microwave dielectrics.


Nature | 2013

Interface superconductor with gap behaviour like a high-temperature superconductor

Christoph Richter; Hans Boschker; W. Dietsche; E. Fillis-Tsirakis; Rainer Jany; F. Loder; Lena F. Kourkoutis; David A. Muller; J. R. Kirtley; C. W. Schneider; J. Mannhart

The physics of the superconducting state in two-dimensional (2D) electron systems is relevant to understanding the high-transition-temperature copper oxide superconductors and for the development of future superconductors based on interface electron systems. But it is not yet understood how fundamental superconducting parameters, such as the spectral density of states, change when these superconducting electron systems are depleted of charge carriers. Here we use tunnel spectroscopy with planar junctions to measure the behaviour of the electronic spectral density of states as a function of carrier density, clarifying this issue experimentally. We chose the conducting LaAlO3–SrTiO3 interface as the 2D superconductor, because this electron system can be tuned continuously with an electric gate field. We observed an energy gap of the order of 40 microelectronvolts in the density of states, whose shape is well described by the Bardeen–Cooper–Schrieffer superconducting gap function. In contrast to the dome-shaped dependence of the critical temperature, the gap increases with charge carrier depletion in both the underdoped region and the overdoped region. These results are analogous to the pseudogap behaviour of the high-transition-temperature copper oxide superconductors and imply that the smooth continuation of the superconducting gap into pseudogap-like behaviour could be a general property of 2D superconductivity.


Nano Letters | 2011

Controlled synthesis of uniform cobalt phosphide hyperbranched nanocrystals using tri-n-octylphosphine oxide as a phosphorus source.

Haitao Zhang; Don Hyung Ha; Robert Hovden; Lena F. Kourkoutis; Richard D. Robinson

A new method to produce hyperbranched Co(2)P nanocrystals that are uniform in size, shape, and symmetry was developed. In this reaction tri-n-octylphosphine oxide (TOPO) was used as both a solvent and a phosphorus source. The reaction exhibits a novel monomer-saturation-dependent tunability between Co metal nanoparticle (NP) and Co(2)P NP products. The morphology of Co(2)P can be controlled from sheaflike structures to hexagonal symmetric structures by varying the concentration of the surfactant. This unique product differs significantly from other reported hyperbranched nanocrystals in that the highly anisotropic shapes can be stabilized as the majority shape (>84%). This is the first known use of TOPO as a reagent as well as a coordinating background solvent in NP synthesis.


Nature Materials | 2016

Charge transport and localization in atomically coherent quantum dot solids

Kevin Whitham; Jun Yang; Benjamin H. Savitzky; Lena F. Kourkoutis; Frank W. Wise; Tobias Hanrath

Epitaxial attachment of quantum dots into ordered superlattices enables the synthesis of quasi-two-dimensional materials that theoretically exhibit features such as Dirac cones and topological states, and have major potential for unprecedented optoelectronic devices. Initial studies found that disorder in these structures causes localization of electrons within a few lattice constants, and highlight the critical need for precise structural characterization and systematic assessment of the effects of disorder on transport. Here we fabricated superlattices with the quantum dots registered to within a single atomic bond length (limited by the polydispersity of the quantum dot building blocks), but missing a fraction (20%) of the epitaxial connections. Calculations of the electronic structure including the measured disorder account for the electron localization inferred from transport measurements. The calculations also show that improvement of the epitaxial connections will lead to completely delocalized electrons and may enable the observation of the remarkable properties predicted for these materials.


Nature | 2016

Atomically engineered ferroic layers yield a room-temperature magnetoelectric multiferroic

Julia A. Mundy; Charles M. Brooks; Megan E. Holtz; Jarrett A. Moyer; Hena Das; Alejandro F. Rebola; John Heron; James D. Clarkson; Steven M. Disseler; Zhiqi Liu; Alan Farhan; Rainer Held; Robert Hovden; Elliot Padgett; Qingyun Mao; Hanjong Paik; Rajiv Misra; Lena F. Kourkoutis; Elke Arenholz; Andreas Scholl; J. A. Borchers; William Ratcliff; R. Ramesh; Craig J. Fennie; P. Schiffer; David A. Muller; Darrell G. Schlom

Materials that exhibit simultaneous order in their electric and magnetic ground states hold promise for use in next-generation memory devices in which electric fields control magnetism. Such materials are exceedingly rare, however, owing to competing requirements for displacive ferroelectricity and magnetism. Despite the recent identification of several new multiferroic materials and magnetoelectric coupling mechanisms, known single-phase multiferroics remain limited by antiferromagnetic or weak ferromagnetic alignments, by a lack of coupling between the order parameters, or by having properties that emerge only well below room temperature, precluding device applications. Here we present a methodology for constructing single-phase multiferroic materials in which ferroelectricity and strong magnetic ordering are coupled near room temperature. Starting with hexagonal LuFeO3—the geometric ferroelectric with the greatest known planar rumpling—we introduce individual monolayers of FeO during growth to construct formula-unit-thick syntactic layers of ferrimagnetic LuFe2O4 (refs 17, 18) within the LuFeO3 matrix, that is, (LuFeO3)m/(LuFe2O4)1 superlattices. The severe rumpling imposed by the neighbouring LuFeO3 drives the ferrimagnetic LuFe2O4 into a simultaneously ferroelectric state, while also reducing the LuFe2O4 spin frustration. This increases the magnetic transition temperature substantially—from 240 kelvin for LuFe2O4 (ref. 18) to 281 kelvin for (LuFeO3)9/(LuFe2O4)1. Moreover, the ferroelectric order couples to the ferrimagnetism, enabling direct electric-field control of magnetism at 200 kelvin. Our results demonstrate a design methodology for creating higher-temperature magnetoelectric multiferroics by exploiting a combination of geometric frustration, lattice distortions and epitaxial engineering.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Structure and control of charge density waves in two-dimensional 1T-TaS2

Adam W. Tsen; Robert Hovden; Dennis Wang; Young Duck Kim; Junichi Okamoto; Katherine A. Spoth; Yu Liu; Wenjian Lu; Yuping Sun; James Hone; Lena F. Kourkoutis; Philip Kim; Abhay Pasupathy

Significance The ability to electrically control collective electron states is a central goal of materials research and may allow for the development of novel devices. 1T-TaS2 is an ideal candidate for such devices due to the existence of various charge ordered states in its phase diagram. Although various techniques have been demonstrated to manipulate charge order in 1T-TaS2, a fundamental understanding of the effects is still lacking, and the methods used are incompatible with device fabrication. By using both high-resolution transmission electron microscopy and electronic transport to investigate atomically thin 1T-TaS2 samples, we clarify the microscopic nature of the charge ordered phases in the 2D limit and further control them by all-electrical means. The layered transition metal dichalcogenides host a rich collection of charge density wave phases in which both the conduction electrons and the atomic structure display translational symmetry breaking. Manipulating these complex states by purely electronic methods has been a long-sought scientific and technological goal. Here, we show how this can be achieved in 1T-TaS2 in the 2D limit. We first demonstrate that the intrinsic properties of atomically thin flakes are preserved by encapsulation with hexagonal boron nitride in inert atmosphere. We use this facile assembly method together with transmission electron microscopy and transport measurements to probe the nature of the 2D state and show that its conductance is dominated by discommensurations. The discommensuration structure can be precisely tuned in few-layer samples by an in-plane electric current, allowing continuous electrical control over the discommensuration-melting transition in 2D.

Collaboration


Dive into the Lena F. Kourkoutis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harold Y. Hwang

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Yasuyuki Hikita

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge