Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Léna Le Roy is active.

Publication


Featured researches published by Léna Le Roy.


Science | 2015

Time variability and heterogeneity in the coma of 67P/Churyumov-Gerasimenko

Myrtha Hässig; Kathrin Altwegg; H. Balsiger; Akiva Bar-Nun; J. J. Berthelier; André Bieler; P. Bochsler; Christelle Briois; Ursina Maria Calmonte; Michael R. Combi; J. De Keyser; P. Eberhardt; Björn Fiethe; S. A. Fuselier; M. Galand; Sébastien Gasc; Tamas I. Gombosi; Kenneth Calvin Hansen; Annette Jäckel; H. U. Keller; Ernest Kopp; A. Korth; E. Kührt; Léna Le Roy; U. Mall; Bernard Marty; Olivier Mousis; Eddy Neefs; Tobias Owen; H. Rème

Comets contain the best-preserved material from the beginning of our planetary system. Their nuclei and comae composition reveal clues about physical and chemical conditions during the early solar system when comets formed. ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) onboard the Rosetta spacecraft has measured the coma composition of comet 67P/Churyumov-Gerasimenko with well-sampled time resolution per rotation. Measurements were made over many comet rotation periods and a wide range of latitudes. These measurements show large fluctuations in composition in a heterogeneous coma that has diurnal and possibly seasonal variations in the major outgassing species: water, carbon monoxide, and carbon dioxide. These results indicate a complex coma-nucleus relationship where seasonal variations may be driven by temperature differences just below the comet surface.


Astronomy and Astrophysics | 2015

Inventory of the volatiles on comet 67P/Churyumov-Gerasimenko from Rosetta/ROSINA

Léna Le Roy; Kathrin Altwegg; H. Balsiger; J. J. Berthelier; André Bieler; Christelle Briois; Ursina Maria Calmonte; Michael R. Combi; Johan De Keyser; Frederik Dhooghe; Björn Fiethe; S. A. Fuselier; Sébastien Gasc; Tamas I. Gombosi; Myrtha Hässig; Annette Jäckel; Martin Rubin; Chia-Yu Tzou

The ESA Rosetta spacecraft (S/C) is tracking comet 67P/Churyumov-Gerasimenko in close vicinity. This prolonged en- counter enables studying the evolution of the volatile coma composition. Aims. Our work aims at comparing the diversity of the coma of 67P/Churyumov-Gerasimenko at large heliocentric distance to study the evolution of the comet during its passage around the Sun and at trying to classify it relative to other comets. Methods. We used the Double Focussing Mass Spectrometer (DFMS) of the ROSINA experiment on ESA’s Rosetta mission to determine relative abundances of major and minor volatile species. This study is restricted to species that have previously been detected elsewhere. Results. We detect almost all species currently known to be present in cometary coma with ROSINA DFMS. As DFMS measured the composition locally, we cannot derive a global abundance, but we compare measurements from the summer and the winter hemisphere with known abundances from other comets. Differences between relative abundances between summer and winter hemispheres are large, which points to a possible evolution of the cometary surface. This comet appears to be very rich in CO2 and ethane. Heavy oxygenated compounds such as ethylene glycol are underabundant at 3 AU, probably due to their high sublimation temperatures, but nevertheless, their presence proves that Kuiper belt comets also contain complex organic molecules.


Science | 2015

Molecular nitrogen in comet 67P/Churyumov-Gerasimenko indicates a low formation temperature

Martin Rubin; Kathrin Altwegg; H. Balsiger; Akiva Bar-Nun; Jean-Jacques Berthelier; André Bieler; P. Bochsler; C. Briois; Ursina Maria Calmonte; Michael R. Combi; J. De Keyser; Frederik Dhooghe; P. Eberhardt; Björn Fiethe; S. A. Fuselier; Sébastien Gasc; Tamas I. Gombosi; Kenneth Calvin Hansen; Myrtha Hässig; Annette Jäckel; Ernest Kopp; A. Korth; Léna Le Roy; U. Mall; Bernard Marty; Olivier Mousis; Tobias Owen; H. Rème; Thierry Sémon; Chia-Yu Tzou

Making comets in the cold The speciation of nitrogen compounds in comets can tell us about their history. Comets are some of the most ancient bodies in the solar system and should contain the nitrogen compounds that were abundant when they formed. Using the ROSINA mass spectrometer aboard the Rosetta spacecraft orbiting comet 67P/Churyumov-Gerasimenko, Rubin et al. found molecular nitrogen at levels that are depleted compared to those in the primordial solar system. Depletion of such a magnitude suggests that the comet formed either from the low-temperature agglomeration of pristine amorphous water ice grains or from clathrates. Science, this issue p. 232 Direct measurements of N2 by instruments aboard the Rosetta spacecraft provide clues about the comet’s long history. Molecular nitrogen (N2) is thought to have been the most abundant form of nitrogen in the protosolar nebula. It is the main N-bearing molecule in the atmospheres of Pluto and Triton and probably the main nitrogen reservoir from which the giant planets formed. Yet in comets, often considered the most primitive bodies in the solar system, N2 has not been detected. Here we report the direct in situ measurement of N2 in the Jupiter family comet 67P/Churyumov-Gerasimenko, made by the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis mass spectrometer aboard the Rosetta spacecraft. A N2/CO ratio of (5.70±0.66)×10−3 (2σ standard deviation of the sampled mean) corresponds to depletion by a factor of ~25.4 ± 8.9 as compared to the protosolar value. This depletion suggests that cometary grains formed at low-temperature conditions below ~30 kelvin.


Science Advances | 2016

Prebiotic chemicals—amino acid and phosphorus—in the coma of comet 67P/Churyumov-Gerasimenko

Kathrin Altwegg; H. Balsiger; Akiva Bar-Nun; J. J. Berthelier; André Bieler; P. Bochsler; Christelle Briois; Ursina Maria Calmonte; Michael R. Combi; H. Cottin; Johan De Keyser; Frederik Dhooghe; Björn Fiethe; S. A. Fuselier; Sébastien Gasc; Tamas I. Gombosi; Kenneth Calvin Hansen; Myrtha Haessig; Annette Jäckel; Ernest Kopp; A. Korth; Léna Le Roy; U. Mall; Bernard Marty; Olivier Mousis; Tobias Owen; H. Rème; Martin Rubin; Thierry Sémon; Chia Yu Tzou

The detection of glycine and phosphorus in the coma of 67P shows that comets contain all ingredients to help spark life on Earth. The importance of comets for the origin of life on Earth has been advocated for many decades. Amino acids are key ingredients in chemistry, leading to life as we know it. Many primitive meteorites contain amino acids, and it is generally believed that these are formed by aqueous alterations. In the collector aerogel and foil samples of the Stardust mission after the flyby at comet Wild 2, the simplest form of amino acids, glycine, has been found together with precursor molecules methylamine and ethylamine. Because of contamination issues of the samples, a cometary origin was deduced from the 13C isotopic signature. We report the presence of volatile glycine accompanied by methylamine and ethylamine in the coma of 67P/Churyumov-Gerasimenko measured by the ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) mass spectrometer, confirming the Stardust results. Together with the detection of phosphorus and a multitude of organic molecules, this result demonstrates that comets could have played a crucial role in the emergence of life on Earth.


Astronomy and Astrophysics | 2015

Comparison of 3D kinetic and hydrodynamic models to ROSINA-COPS measurements of the neutral coma of 67P/Churyumov-Gerasimenko

André Bieler; Kathrin Altwegg; H. Balsiger; Jean-Jacques Berthelier; Ursina Maria Calmonte; Michael R. Combi; Johan De Keyser; Björn Fiethe; N. Fougere; S. A. Fuselier; Sébastien Gasc; Tamas I. Gombosi; Kenneth Calvin Hansen; Myrtha Hässig; Zhenguang Huang; Annette Jäckel; Xianzhe Jia; Léna Le Roy; U. Mall; H. Rème; Martin Rubin; Valeriy M. Tenishev; Gabor Zsolt Toth; Chia-Yu Tzou; Peter Wurz

67P/Churyumov-Gerasimenko (hereafter 67P) is a Jupiter-family comet and the object of investigation of the European Space Agency mission Rosetta. This report presents the first full 3D simulation results of 67P’s neutral gas coma. In this study we include results from a direct simulation Monte Carlo method, a hydrodynamic code, and a purely geometric calculation which computes the total illuminated surface area on the nucleus. All models include the triangulated 3D shape model of 67P as well as realistic illumination and shadowing conditions. The basic concept is the assumption that these illumination conditions on the nucleus are the main driver for the gas activity of the comet. As a consequence, the total production rate of 67P varies as a function of solar insolation. The best agreement between the model and the data is achieved when gas fluxes on the night side are in the range of 7% to 10% of the maximum flux, accounting for contributions from the most volatile components. To validate the output of our numerical simulations we compare the results of all three models to in situ gas number density measurements from the ROSINA COPS instrument. We are able to reproduce the overall features of these local neutral number density measurements of ROSINA COPS for the time period between early August 2014 and January 1 2015 with all three models. Some details in the measurements are not reproduced and warrant further investigation and refinement of the models. However, the overall assumption that illumination conditions on the nucleus are at least an important driver of the gas activity is validated by the models. According to our simulation results we find the total production rate of 67P to be constant between August and November 2014 with a value of about 1 × 1026 molecules s−1.


Science | 2015

Organic compounds on comet 67P/Churyumov-Gerasimenko revealed by COSAC mass spectrometry

Fred Goesmann; H. Rosenbauer; Jan Hendrik Bredehöft; Michel Cabane; Pascale Ehrenfreund; Thomas Gautier; Chaitanya Giri; Harald Krüger; Léna Le Roy; A. J. MacDermott; S. McKenna-Lawlor; Uwe J. Meierhenrich; Guillermo M. Muñoz Caro; F. Raulin; Reinhard Roll; Andrew Steele; Harald Steininger; Robert J. Sternberg; Cyril Szopa; Wolfram Thiemann; Stephan Ulamec

Comets harbor the most pristine material in our solar system in the form of ice, dust, silicates, and refractory organic material with some interstellar heritage. The evolved gas analyzer Cometary Sampling and Composition (COSAC) experiment aboard Rosetta’s Philae lander was designed for in situ analysis of organic molecules on comet 67P/Churyumov-Gerasimenko. Twenty-five minutes after Philae’s initial comet touchdown, the COSAC mass spectrometer took a spectrum in sniffing mode, which displayed a suite of 16 organic compounds, including many nitrogen-bearing species but no sulfur-bearing species, and four compounds—methyl isocyanate, acetone, propionaldehyde, and acetamide—that had not previously been reported in comets.


Astronomy and Astrophysics | 2016

Three-dimensional direct simulation Monte-Carlo modeling of the coma of comet 67P/Churyumov-Gerasimenko observed by the VIRTIS and ROSINA instruments on board Rosetta

N. Fougere; Kathrin Altwegg; J.-J. Berthelier; André Bieler; Dominique Bockelee-Morvan; Ursina Maria Calmonte; F. Capaccioni; Michael R. Combi; J. De Keyser; V. Debout; Stephane Erard; Björn Fiethe; G. Filacchione; U. Fink; S. A. Fuselier; Tamas I. Gombosi; Kenneth Calvin Hansen; Myrtha Hässig; Zhenguang Huang; Léna Le Roy; Cedric Leyrat; A. Migliorini; G. Piccioni; G. Rinaldi; Martin Rubin; Y. Shou; Valeriy M. Tenishev; Gabor Zsolt Toth; Chia-Yu Tzou

Since its rendezvous with comet 67P/Churyumov-Gerasimenko (67P), the Rosetta spacecraft has provided invaluable information contributing to our understanding of the cometary environment. On board, the VIRTIS and ROSINA instruments can both measure gas parameters in the rarefied cometary atmosphere, the so-called coma, and provide complementary results with remote sensing and in situ measurement techniques, respectively. The data from both ROSINA and VIRTIS instruments suggest that the source regions of H2O and CO2 are not uniformly distributed over the surface of the nucleus even after accounting for the changing solar illumination of the irregularly shaped rotating nucleus. The source regions of H2O and CO2 are also relatively different from one another. Aims. The use of a combination of a formal numerical data inversion method with a fully kinetic coma model is a way to correlate and interpret the information provided by these two instruments to fully understand the volatile environment and activity of comet 67P. Methods. In this work, the nonuniformity of the outgassing activity at the surface of the nucleus is described by spherical harmonics and constrained by ROSINA-DFMS data. This activity distribution is coupled with the local illumination to describe the inner boundary conditions of a 3D direct simulation Monte-Carlo (DSMC) approach using the Adaptive Mesh Particle Simulator (AMPS) code applied to the H2O and CO2 coma of comet 67P. Results. We obtain activity distribution of H2O and CO2 showing a dominant source of H2O in the Hapi region, while more CO2 is produced in the southern hemisphere. The resulting model outputs are analyzed and compared with VIRTIS-M/-H and ROSINA-DFMS measurements, showing much better agreement between model and data than a simpler model assuming a uniform surface activity. The evolution of the H2O and CO2 production rates with heliocentric distance are derived accurately from the coma model showing agreement between the observations from the different instruments and ground-based observations. Conclusions. We derive the activity distributions for H2O and CO2 at the surface of the nucleus described in spherical harmonics, which we couple to the local solar illumination to constitute the boundary conditions of our coma model. The model presented reproduces the coma observations made by the ROSINA and VIRTIS instruments on board the Rosetta spacecraft showing our understanding of the physics of 67P’s coma. This model can be used for further data analyses, such as dust modeling, in a future work.


Nature | 2016

High-molecular-weight organic matter in the particles of comet 67P/Churyumov–Gerasimenko

Nicolas Fray; Anais Bardyn; H. Cottin; Kathrin Altwegg; Donia Baklouti; Christelle Briois; L. Colangeli; C. Engrand; Henning Fischer; Albrecht Glasmachers; E. Grün; Gerhard Haerendel; Hartmut Henkel; H. Höfner; Klaus Hornung; Elmar K. Jessberger; Andreas Koch; Harald Krüger; Yves Langevin; Harry J. Lehto; Kirsi Lehto; Léna Le Roy; S. Merouane; Paola Modica; F.-R. Orthous-Daunay; John Paquette; F. Raulin; Jouni Rynö; R. Schulz; Johan Silen

The presence of solid carbonaceous matter in cometary dust was established by the detection of elements such as carbon, hydrogen, oxygen and nitrogen in particles from comet 1P/Halley. Such matter is generally thought to have originated in the interstellar medium, but it might have formed in the solar nebula—the cloud of gas and dust that was left over after the Sun formed. This solid carbonaceous material cannot be observed from Earth, so it has eluded unambiguous characterization. Many gaseous organic molecules, however, have been observed; they come mostly from the sublimation of ices at the surface or in the subsurface of cometary nuclei. These ices could have been formed from material inherited from the interstellar medium that suffered little processing in the solar nebula. Here we report the in situ detection of solid organic matter in the dust particles emitted by comet 67P/Churyumov–Gerasimenko; the carbon in this organic material is bound in very large macromolecular compounds, analogous to the insoluble organic matter found in the carbonaceous chondrite meteorites. The organic matter in meteorites might have formed in the interstellar medium and/or the solar nebula, but was almost certainly modified in the meteorites’ parent bodies. We conclude that the observed cometary carbonaceous solid matter could have the same origin as the meteoritic insoluble organic matter, but suffered less modification before and/or after being incorporated into the comet.


Science Advances | 2015

Detection of argon in the coma of comet 67P/Churyumov-Gerasimenko

H. Balsiger; Kathrin Altwegg; Akiva Bar-Nun; Jean-Jacques Berthelier; André Bieler; P. Bochsler; Christelle Briois; Ursina Maria Calmonte; Michael R. Combi; Johan De Keyser; P. Eberhardt; Björn Fiethe; S. A. Fuselier; Sébastien Gasc; Tamas I. Gombosi; Kenneth Calvin Hansen; Myrtha Hässig; Annette Jäckel; Ernest Kopp; A. Korth; Léna Le Roy; U. Mall; Bernard Marty; Olivier Mousis; Tobias Owen; H. Rème; Martin Rubin; Thierry Sémon; Chia-Yu Tzou; J. Hunter Waite

ROSINA/DFMS shows that comets of type 67P/CG likely did not significantly contribute to Earth’s volatile budget. Comets have been considered to be representative of icy planetesimals that may have contributed a significant fraction of the volatile inventory of the terrestrial planets. For example, comets must have brought some water to Earth. However, the magnitude of their contribution is still debated. We report the detection of argon and its relation to the water abundance in the Jupiter family comet 67P/Churyumov-Gerasimenko by in situ measurement of the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) mass spectrometer aboard the Rosetta spacecraft. Despite the very low intensity of the signal, argon is clearly identified by the exact determination of the mass of the isotope 36Ar and by the 36Ar/38Ar ratio. Because of time variability and spatial heterogeneity of the coma, only a range of the relative abundance of argon to water can be given. Nevertheless, this range confirms that comets of the type 67P/Churyumov-Gerasimenko cannot be the major source of Earth’s major volatiles.


Archive | 2015

Composition-dependent outgassing of comet 67P/Churyumov-Gerasimenko from ROSINA/DFMS

A. Luspay-Kuti; Myrtha Hässig; S. A. Fuselier; K. Mandt; Kathrin Altwegg; H. Balsiger; Sébastien Gasc; Annette Jäckel; Léna Le Roy; Martin Rubin; Chia-Yu Tzou; Peter Wurz; Olivier Mousis; Frederik Dhooghe; J. J. Berthelier; Björn Fiethe; Tamas I. Gombosi; U. Mall

Early measurements of Rosetta’s target comet, 67P/Churyumov-Gerasimenko (67P), showed a strongly heterogeneous coma in H2O, CO, and CO2. Aims. The purpose of this work is to further investigate the coma heterogeneity of 67P, and to provide predictions for the near- perihelion outgassing profile based on the proposed explanations. Methods. Measurements of various minor volatile species by ROSINA/DFMS on board Rosetta are examined. The analysis focuses on the currently poorly illuminated winter (southern) hemisphere of 67P. Results. Coma heterogeneity is not limited to the major outgassing species. Minor species show better correlation with either H2O or CO2. The molecule CH4 shows a different diurnal pattern from all other analyzed species. Such features have implications for nucleus heterogeneity and thermal processing. Conclusions. Future analysis of additional volatiles and modeling the heterogeneity are required to better understand the observed coma profile.

Collaboration


Dive into the Léna Le Roy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Björn Fiethe

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar

S. A. Fuselier

Southwest Research Institute

View shared research outputs
Top Co-Authors

Avatar

Tamas I. Gombosi

Budapest University of Technology and Economics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Myrtha Hässig

Southwest Research Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge