Lena Mäler
Stockholm University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lena Mäler.
Archive | 2006
Jozef Kowalewski; Lena Mäler
Equilibrium and Nonequilibrium States in NMR Simple Relaxation Theory Relaxation through Dipolar Interactions The Redfield Relaxation Theory Applications of Redfield Theory to Systems of Spin 1/2 Nuclei Spectral Densities and Molecular Dynamics NMR - the Toolbox Measuring T1 and T2 Relaxation Times Cross-Relaxation Measurements Cross-Correlation and Multiple-Quantum Relaxation Measurements Relaxation and Molecular Dynamics Applications of Relaxation-Related Measurements to Structure Determination Relaxation and Chemical Exchange Effects of Quadrupolar Nuclei Nuclear Spin Relaxation in Paramagnetic Systems in Solution Nuclear Spin Relaxation in Other Aggregation States Index
FEBS Letters | 2004
Elsa Bárány-Wallje; August Andersson; Astrid Gräslund; Lena Mäler
Transportan is a chimeric cell‐penetrating peptide constructed from the peptides galanin and mastoparan, which has the ability to internalize living cells carrying a hydrophilic load. In this study, we have determined the NMR solution structure and investigated the position of transportan in neutral bicelles. The structure revealed a well‐defined α‐helix in the C‐terminal mastoparan part of the peptide and a weaker tendency to form an α‐helix in the N‐terminal domain. The position of the peptide in relation to the membrane, as studied by adding paramagnetic probes, shows that the peptide lies parallel to, and in the head‐group region of the membrane surface. This result is supported by amide proton secondary chemical shifts.
Journal of Biomolecular NMR | 2002
August Andersson; Lena Mäler
The structure and dynamics of the gastrointestinal peptide hormone motilin, consisting of 22 amino acid residues, have been studied in the presence of isotropic q=0.5 phospholipid bicelles. The NMR solution structure of the peptide in acidic bicelle solution was determined from 203 NOE-derived distance constraints and six backbone torsion angle constraints. Dynamic properties for the 13Cα-1H vector in Leu10 were determined for motilin specifically labeled with 13C at this position by analysis of multiple-field relaxation data. The structure reveals an ordered α-helical conformation between Glu9 and Lys20. The N-terminus is also well structured with a turn resembling that of a classical β-turn. The 13C dynamics clearly show that motilin tumbles slowly in solution, with a correlation time characteristic of a large object. It was also found that motilin has a large degree of local flexibility as compared with what has previously been reported in SDS micelles. The results show that motilin interacts with the bicelle, displaying motional properties of a peptide bound to a membrane. In comparison, motilin in neutral bicelles seems less structured and more flexible. This study shows that the small isotropic bicelles are well suited for use as membrane-mimetic for structural as well as dynamical investigations of membrane-bound peptides by high-resolution NMR.
Biochimica et Biophysica Acta | 2008
Jesper Lind; Jon Nordin; Lena Mäler
The morphology of q=0.5 fast-tumbling bicelles prepared with three different acyl chain lengths has been investigated by NMR. It is shown that bicelles prepared with DLPC (12 C) and DHPC are on average larger than those containing DMPC or DPPC (14 and 16 C) and DHPC, which may be due to a higher degree of mixing between DLPC and DHPC. The fast internal mobility of the lipids was determined from natural abundance carbon-13 relaxation. A similar dynamical behaviour of the phospholipids in the three different bicelles was observed, although the DPPC lipid acyl chain displayed a somewhat lower degree of mobility, as evidenced by higher generalized order parameters throughout the acyl chain. Carbon-13 relaxation was also used to determine the effect of different model transmembrane peptides, with flanking Lys residues, on the lipid dynamics in the three different bicelles. All peptides had the effect of increasing the order parameters for the DLPC lipid, while no effect was observed on the longer lipid chains. This effect may be explained by a mismatch between the hydrophobic length of the peptides and the DLPC lipid acyl chain.
Molecular Plant | 2009
Anna-Karin Berglund; Erika Spånning; Henrik Biverståhl; Gianluca Maddalo; Christian Tellgren-Roth; Lena Mäler; Elzbieta Glaser
There is a group of proteins that are encoded by a single gene, expressed as a single precursor protein and dually targeted to both mitochondria and chloroplasts using an ambiguous targeting peptide. Sequence analysis of 43 dual targeted proteins in comparison with 385 mitochondrial proteins and 567 chloroplast proteins of Arabidopsis thaliana revealed an overall significant increase in phenylalanines, leucines, and serines and a decrease in acidic amino acids and glycine in dual targeting peptides (dTPs). The N-terminal portion of dTPs has significantly more serines than mTPs. The number of arginines is similar to those in mTPs, but almost twice as high as those in cTPs. We have investigated targeting determinants of the dual targeting peptide of Thr-tRNA synthetase (ThrRS-dTP) studying organellar import of N- and C-terminal deletion constructs of ThrRS-dTP coupled to GFP. These results show that the 23 amino acid long N-terminal portion of ThrRS-dTP is crucial but not sufficient for the organellar import. The C-terminal deletions revealed that the shortest peptide that was capable of conferring dual targeting was 60 amino acids long. We have purified the ThrRS-dTP(2-60) to homogeneity after its expression as a fusion construct with GST followed by CNBr cleavage and ion exchange chromatography. The purified ThrRS-dTP(2-60) inhibited import of pF1beta into mitochondria and of pSSU into chloroplasts at microM concentrations showing that dual and organelle-specific proteins use the same organellar import pathways. Furthermore, the CD spectra of ThrRS-dTP(2-60) indicated that the peptide has the propensity for forming alpha-helical structure in membrane mimetic environments; however, the membrane charge was not important for the amount of induced helical structure. This is the first study in which a dual targeting peptide has been purified and investigated by biochemical and biophysical means.
European Biophysics Journal | 2007
August Andersson; Jens Danielsson; Astrid Gräslund; Lena Mäler
In this article analytical expressions for peptide-induced membrane leakage are presented. Two different models for time-dependent leakage have been developed. In the first, the leakage is assumed to be coupled by pores formed by the peptides. In the second model the peptide is assumed to induce a stress/perturbation in the membrane, and in order to reduce the stress, rearrangements in the membrane are induced. The leakage is coupled to these rearrangements, and when equilibrium is achieved no more leakage occurs. From the kinetic models simple fitting routines have been developed involving only two fitting parameters, and these have been used to fit experimental data for two prion protein-derived peptides as well as the honey bee toxin melittin in both vesicles and erythrocytes with good results. The fitted parameters provide both a quantitative and a qualitative basis for interpreting the experimental results. In addition a model for the peptide concentration-dependent leakage is presented, which was used to fit experimental data for leakage induced by the prion protein-derived peptides. The models presented in this article are compared with other models for peptide-induced membrane leakage.
Methods of Molecular Biology | 2009
Lena Mäler; Astrid Gräslund
Artificial biomembrane mimetic model systems are used to characterize peptide-membrane interactions using a wide range of methods. Herein, we present the use of selected membrane model systems to investigate peptide-membrane interactions. We describe methods for the preparation of various membrane mimetic media. Our applications will focus on small unilamellar vesicles (SUVs) and large unilamellar vesicles (LUVs) as well as on media more suited for nuclear magnetic resonance (NMR) techniques, micelles, and fast-tumbling two-component bilayered micelles (bicelles).
Biochimica et Biophysica Acta | 2011
Jelena Dinic; Henrik Biverståhl; Lena Mäler; Ingela Parmryd
Laurdan and di-4-ANEPPDHQ are used as probes for membrane order, with a blue shift in emission for membranes in liquid-ordered (lo) phase relative to membranes in liquid-disordered (ld) phase. Their use as membrane order probes requires that their spectral shifts are unaffected by membrane proteins, which we have examined by using membrane inserting peptides and large unilamellar vesicles (LUVs). The transmembrane polypeptides, mastoparan and bovine prion protein-derived peptide (bPrPp), were added to LUVs of either lo or ld phase, up to 1:10 peptide/total lipid ratio. The excitation and emission spectra of laurdan and di-4-ANEPPDHQ in both lipid phases were unaltered by peptide addition. The integrity and size distribution of the LUVs upon addition of the polypeptides were determined by dynamic light scattering. The insertion efficiency of the polypeptides into LUVs was determined by measuring their secondary structure by circular dichroism. Mastoparan had an α-helical and bPrPp a β-strand conformation compatible with insertion into the lipid bilayer. Our results suggest that the presence of proteins in biological membranes does not influence the spectra of laurdan and di-4-ANEPPDHQ, supporting that the dyes are appropriate probes for assessing lipid order in cells.
Journal of Biomolecular NMR | 1996
Lena Mäler; Göran Widmalm; Jozef Kowalewski
Summary13C relaxation data obtained at three different magnetic fields, 9.4, 11.8 and 14.1 T, and at two temperatures, 303 and 318 K, are reported for the pentasaccharide p-trifluoroacetamidophenyl 2,6-di-O-[β-d-galactopyranosyl-(1→4)-O-2-acetamido-2-deoxy-β-d-glucopyranosyl]α-d-mannopyranoside. The pentasaccharide consists of two disaccharide units, attached at position 2 and 6 to the central mannopyranoside residue. The relaxation data were interpreted with the Lipari-Szabo model-free approach. For the central mannose residue in the molecule a high order parameter (S2=0.91) was found and the relaxation data could be interpreted with the truncated form of the Lipari-Szabo model. The motional behavior of the two 2-acetamido-2-deoxy-glucopyranoside residues was found to differ. The one attached at the primary hydroxylic position displayed more extensive local motion (S2=0.75–0.77) than the one attached at the secondary hydroxylic position (S2=0.83–0.85). More extensive local motion for the two outer galactopyranoside residues was found (S2=0.56–0.59), but no significant difference in motional behavior between the two residues could be observed. Analysis of the relaxation data for the exocyclic carbons confirmed the results for the rings. For the mannose C6, the same motional parameters as obtained for the substituting 2-acetamido-2-deoxy-glucopyranoside residue were found. The two exocyclic carbons on the 2-acetamido-2-deoxy-glucopyranoside residues showed more extensive local motion, with lower order parameters (S2=0.59–0.66).
Molecular Membrane Biology | 2012
Lena Mäler
Abstract Many important processes in life take place in or around the cell membranes. Lipids have different properties regarding their membrane-forming capacities, their mobility, shape, size and surface charge, and all of these factors influence the way that proteins and peptides interact with the membrane. In order for us to correctly understand these interactions, we need to be able to study all aspects of the interplay between lipids and peptides and proteins. Solution-state NMR offers a somewhat unique possibility to investigate structure, dynamics and location of proteins and peptides in bilayers. This review focuses on solution NMR as a tool for investigating peptide-lipid interaction, and special attention is given to the various membrane mimetics that are used to model the membrane. Examples from the field of cell-penetrating peptides and their lipid interactions will be given. The importance of studying lipid and peptide dynamics, which reflect on the effect that peptides have on bilayers, is highlighted, and in this respect, also the need for realistic membrane models.