Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lene Christiansen is active.

Publication


Featured researches published by Lene Christiansen.


Aging Cell | 2012

Epigenetic variation during the adult lifespan: cross-sectional and longitudinal data on monozygotic twin pairs.

Rudolf P. Talens; Kaare Christensen; Hein Putter; Gonneke Willemsen; Lene Christiansen; Dennis Kremer; H. Eka D. Suchiman; P. Eline Slagboom; Dorret I. Boomsma; Bastiaan T. Heijmans

The accumulation of epigenetic changes was proposed to contribute to the age‐related increase in the risk of most common diseases. In this study on 230 monozygotic twin pairs (MZ pairs), aged 18–89u2003years, we investigated the occurrence of epigenetic changes over the adult lifespan. Using mass spectrometry, we investigated variation in global (LINE1) DNA methylation and in DNA methylation at INS, KCNQ1OT1, IGF2, GNASAS, ABCA1, LEP, and CRH, candidate loci for common diseases. Except for KCNQ1OT1, interindividual variation in locus‐specific DNA methylation was larger in old individuals than in young individuals, ranging from 1.2‐fold larger at ABCA1 (Pu2003=u20030.010) to 1.6‐fold larger at INS (Pu2003=u20033.7u2003×u200310−07). Similarly, there was more within‐MZ‐pair discordance in old as compared with young MZ pairs, except for GNASAS, ranging from an 8% increase in discordance each decade at CRH (Pu2003=u20038.9u2003×u200310−06) to a 16% increase each decade at LEP (Pu2003=u20032.0u2003×u200310−08). Still, old MZ pairs with strikingly similar DNA methylation were also observed at these loci. After 10‐year follow‐up in elderly twins, the variation in DNA methylation showed a similar pattern of change as observed cross‐sectionally. The age‐related increase in methylation variation was generally attributable to unique environmental factors, except for CRH, for which familial factors may play a more important role. In conclusion, sustained epigenetic differences arise from early adulthood to old age and contribute to an increasing discordance of MZ twins during aging.


Human Molecular Genetics | 2014

Genome-wide association meta-analysis of human longevity identifies a novel locus conferring survival beyond 90 years of age

Joris Deelen; Marian Beekman; Hae-Won Uh; Linda Broer; Kristin L. Ayers; Qihua Tan; Yoichiro Kamatani; Anna M. Bennet; Riin Tamm; Stella Trompet; Daníel F. Guðbjartsson; Friederike Flachsbart; Giuseppina Rose; Alexander Viktorin; Krista Fischer; Marianne Nygaard; Heather J. Cordell; Paolina Crocco; Erik B. van den Akker; Stefan Böhringer; Quinta Helmer; Christopher P. Nelson; Gary Saunders; Maris Alver; Karen Andersen-Ranberg; Marie E. Breen; Ruud van der Breggen; Amke Caliebe; Miriam Capri; Elisa Cevenini

The genetic contribution to the variation in human lifespan is ∼25%. Despite the large number of identified disease-susceptibility loci, it is not known which loci influence population mortality. We performed a genome-wide association meta-analysis of 7729 long-lived individuals of European descent (≥85 years) and 16 121 younger controls (<65 years) followed by replication in an additional set of 13 060 long-lived individuals and 61 156 controls. In addition, we performed a subset analysis in cases aged ≥90 years. We observed genome-wide significant association with longevity, as reflected by survival to ages beyond 90 years, at a novel locus, rs2149954, on chromosome 5q33.3 (OR = 1.10, P = 1.74 × 10−8). We also confirmed association of rs4420638 on chromosome 19q13.32 (OR = 0.72, P = 3.40 × 10−36), representing the TOMM40/APOE/APOC1 locus. In a prospective meta-analysis (n = 34 103), the minor allele of rs2149954 (T) on chromosome 5q33.3 associates with increased survival (HR = 0.95, P = 0.003). This allele has previously been reported to associate with low blood pressure in middle age. Interestingly, the minor allele (T) associates with decreased cardiovascular mortality risk, independent of blood pressure. We report on the first GWAS-identified longevity locus on chromosome 5q33.3 influencing survival in the general European population. The minor allele of this locus associates with low blood pressure in middle age, although the contribution of this allele to survival may be less dependent on blood pressure. Hence, the pleiotropic mechanisms by which this intragenic variation contributes to lifespan regulation have to be elucidated.


Aging Cell | 2013

Genome-wide linkage analysis for human longevity: Genetics of Healthy Aging Study

Marian Beekman; Hélène Blanché; Markus Perola; Anti Hervonen; Vladyslav Bezrukov; Ewa Sikora; Friederike Flachsbart; Lene Christiansen; Anton J. M. de Craen; Thomas B. L. Kirkwood; Irene Maeve Rea; Michel Poulain; Jean-Marie Robine; Silvana Valensin; Maria Antonietta Stazi; Giuseppe Passarino; Luca Deiana; Efstathios S. Gonos; Lavinia Paternoster; Thorkild Ingvor Arrild Sørensen; Qihua Tan; Quinta Helmer; Erik B. van den Akker; Joris Deelen; Francesca Martella; Heather J. Cordell; Kristin L. Ayers; James W. Vaupel; Outi Törnwall; Thomas E. Johnson

Clear evidence exists for heritability of human longevity, and much interest is focused on identifying genes associated with longer lives. To identify such longevity alleles, we performed the largest genome‐wide linkage scan thus far reported. Linkage analyses included 2118 nonagenarian Caucasian sibling pairs that have been enrolled in 15 study centers of 11 European countries as part of the Genetics of Healthy Aging (GEHA) project. In the joint linkage analyses, we observed four regions that show linkage with longevity; chromosome 14q11.2 (LOD = 3.47), chromosome 17q12‐q22 (LOD = 2.95), chromosome 19p13.3‐p13.11 (LOD = 3.76), and chromosome 19q13.11‐q13.32 (LOD = 3.57). To fine map these regions linked to longevity, we performed association analysis using GWAS data in a subgroup of 1228 unrelated nonagenarian and 1907 geographically matched controls. Using a fixed‐effect meta‐analysis approach, rs4420638 at the TOMM40/APOE/APOC1 gene locus showed significant association with longevity (P‐value = 9.6 × 10−8). By combined modeling of linkage and association, we showed that association of longevity with APOEε4 and APOEε2 alleles explain the linkage at 19q13.11‐q13.32 with P‐value = 0.02 and P‐value = 1.0 × 10−5, respectively. In the largest linkage scan thus far performed for human familial longevity, we confirm that the APOE locus is a longevity gene and that additional longevity loci may be identified at 14q11.2, 17q12‐q22, and 19p13.3‐p13.11. As the latter linkage results are not explained by common variants, we suggest that rare variants play an important role in human familial longevity.


Human Genetics | 2014

Mitochondrial DNA copy number in peripheral blood cells declines with age and is associated with general health among elderly

Jonas Mengel-From; Mikael Thinggaard; Christine Dalgård; Kirsten Ohm Kyvik; Kaare Christensen; Lene Christiansen

The role of the mitochondria in disease, general health and aging has drawn much attention over the years. Several attempts have been made to describe how the numbers of mitochondria correlate with age, although with inconclusive results. In this study, the relative quantity of mitochondrial DNA compared to nuclear DNA, i.e. the mitochondrial DNA copy number, was measured by PCR technology and used as a proxy for the content of mitochondria copies. In 1,067 Danish twins and singletons (18–93xa0years of age), with the majority being elderly individuals, the estimated mean mitochondrial DNA copy number in peripheral blood cells was similar for those 18–48xa0years of age [mean relative mtDNA content: 61.0; 95xa0% CI (52.1; 69.9)], but declined by −0.54 mtDNA 95xa0% CI (−0.63; −0.45) every year for those older than approximately 50xa0years of age. However, the longitudinal, yearly decline within an individual was more than twice as steep as observed in the cross-sectional analysis [decline of mtDNA content:xa0−1.27; 95xa0% CI (−1.71; −0.82)]. Subjects with low mitochondrial DNA copy number had poorer outcomes in terms of cognitive performance, physical strength, self-rated health, and higher all-cause mortality than subjects with high mitochondrial DNA copy number, also when age was controlled for. The copy number mortality association can contribute to the smaller decline in a cross-sectional sample of the population compared to the individual, longitudinal decline. This study suggests that high mitochondrial DNA copy number in blood is associated with better health and survival among elderly.


Experimental Gerontology | 2012

Human longevity and variation in GH/IGF-1/insulin signaling, DNA damage signaling and repair and pro/antioxidant pathway genes: cross sectional and longitudinal studies.

Mette Soerensen; Serena Dato; Qihua Tan; Mikael Thinggaard; Rabea Kleindorp; Marian Beekman; Rune Jacobsen; H. Eka D. Suchiman; Anton J. M. de Craen; Rudi G. J. Westendorp; Stefan Schreiber; Tinna Stevnsner; Vilhelm A. Bohr; P. Eline Slagboom; Almut Nebel; James W. Vaupel; Kaare Christensen; Matt McGue; Lene Christiansen

Here we explore association with human longevity of common genetic variation in three major candidate pathways: GH/IGF-1/insulin signaling, DNA damage signaling and repair and pro/antioxidants by investigating 1273 tagging SNPs in 148 genes composing these pathways. In a case-control study of 1089 oldest-old (age 92-93) and 736 middle-aged Danes we found 1 pro/antioxidant SNP (rs1002149 (GSR)), 5 GH/IGF-1/INS SNPs (rs1207362 (KL), rs2267723 (GHRHR), rs3842755 (INS), rs572169 (GHSR), rs9456497 (IGF2R)) and 5 DNA repair SNPs (rs11571461 (RAD52), rs13251813 (WRN), rs1805329 (RAD23B), rs2953983 (POLB), rs3211994 (NTLH1)) to be associated with longevity after correction for multiple testing. In a longitudinal study with 11 years of follow-up on survival in the oldest-old Danes we found 2 pro/antioxidant SNPs (rs10047589 (TNXRD1), rs207444 (XDH)), 1 GH/IGF-1/INS SNP (rs26802 (GHRL)) and 3 DNA repair SNPs (rs13320360 (MLH1), rs2509049 (H2AFX) and rs705649 (XRCC5)) to be associated with mortality in late life after correction for multiple testing. When examining the 11 SNPs from the case-control study in the longitudinal data, rs3842755 (INS), rs13251813 (WRN) and rs3211994 (NTHL1) demonstrated the same directions of effect (p<0.05), while rs9456497 (IGF2R) and rs1157146 (RAD52) showed non-significant tendencies, indicative of effects also in late life survival. In addition, rs207444 (XDH) presented the same direction of effect when inspecting the 6 SNPs from the longitudinal study in the case-control data, hence, suggesting an effect also in survival from middle age to old age. No formal replications were observed when investigating the 11 SNPs from the case-control study in 1613 oldest-old (age 95-110) and 1104 middle-aged Germans, although rs11571461 (RAD52) did show a supportive non-significant tendency (OR=1.162, 95% CI=0.927-1.457). The same was true for rs10047589 (TNXRD1) (HR=0.758, 95%CI=0.543-1.058) when examining the 6 SNPs from the longitudinal study in a Dutch longitudinal cohort of oldest-old (age 85+, N=563). In conclusion, the present candidate gene based association study, the largest to date applying a pathway approach, not only points to potential new longevity loci, but also underlines the difficulties of replicating association findings in independent study populations and thus the difficulties in identifying universal longevity polymorphisms.


Ageing Research Reviews | 2013

Twins for epigenetic studies of human aging and development

Qihua Tan; Lene Christiansen; Mads Thomassen; Torben A. Kruse; Kaare Christensen

Most of the complex traits including aging phenotypes are caused by the interaction between genome and environmental conditions and the interface of epigenetics may be a central mechanism. Although modern technologies allow us high-throughput profiling of epigenetic patterns already at genome level, our understanding of genetic and environmental influences on the epigenetic processes remains limited. Twins are of special interest for genetic studies due to their genetic similarity and rearing-environment sharing. The classical twin design has made a great contribution in dissecting the genetic and environmental contributions to human diseases and complex traits. In the era of functional genomics, the valuable sample of twins is helping to bridge the gap between gene activity and the environments through epigenetic mechanisms unlimited by DNA sequence variations. We propose to extend the classical twin design to study the aging-related molecular epigenetic phenotypes and link them with environmental exposures especially early life events. Different study designs and application issues will be highlighted and novel approaches introduced with aim at making uses of twins in assessing the environmental impact on epigenetic changes during development and in the aging process.


Aging Cell | 2015

Association study of FOXO3A SNPs and aging phenotypes in Danish oldest-old individuals

Mette Soerensen; Marianne Nygaard; Serena Dato; Tinna Stevnsner; Vilhelm A. Bohr; Kaare Christensen; Lene Christiansen

FOXO3A variation has repeatedly been reported to associate with human longevity, yet only few studies have investigated whether FOXO3A variation also associates with aging‐related traits. Here, we investigate the association of 15 FOXO3A tagging single nucleotide polymorphisms (SNPs) in 1088 oldest‐old Danes (age 92–93) with 4 phenotypes known to predict their survival: cognitive function, hand grip strength, activity of daily living (ADL), and self‐rated health. Based on previous studies in humans and foxo animal models, we also explore self‐reported diabetes, cancer, cardiovascular disease, osteoporosis, and bone (femur/spine/hip/wrist) fracture. Gene‐based testing revealed significant associations of FOXO3A variation with ADL (P = 0.044) and bone fracture (P = 0.006). The single‐SNP statistics behind the gene‐based analysis indicated increased ADL (decreased disability) and reduced bone fracture risk for carriers of the minor alleles of 8 and 10 SNPs, respectively. These positive directions of effects are in agreement with the positive effects on longevity previously reported for these SNPs. However, when correcting for the test of 9 phenotypes by Bonferroni correction, bone fracture showed borderline significance (P = 0.054), while ADL did not (P = 0.396). Although the single‐SNP associations did not formally replicate in another study population of oldest‐old Danes (n = 1279, age 94–100), the estimates were of similar direction of effect as observed in the Discovery sample. A pooled analysis of both study populations displayed similar or decreased sized P‐values for most associations, hereby supporting the initial findings. Nevertheless, confirmation in additional study populations is needed.


Experimental Gerontology | 2014

Birth cohort differences in the prevalence of longevity-associated variants in APOE and FOXO3A in Danish long-lived individuals

Marianne Nygaard; Rune Lindahl-Jacobsen; Mette Soerensen; Jonas Mengel-From; Karen Andersen-Ranberg; Bernard Jeune; James W. Vaupel; Qihua Tan; Lene Christiansen; Kaare Christensen

Gene variants found to associate with human longevity in one population rarely replicate in other populations. The lack of consistent findings may partly be explained by genetic heterogeneity among long-lived individuals due to cohort differences in survival probability. In most high-income countries the probability of reaching e.g. 100years increases by 50-100% per decade, i.e. there is far less selection in more recent cohorts. Here we investigate the cohort specificity of variants in the APOE and FOXO3A genes by comparing the frequencies of the APOE ε4 allele and the minor alleles of two variants in FOXO3A at age 95+ and 100+ in 2712 individuals from the genetically homogeneous Danish birth cohorts 1895-96, 1905, 1910-11, and 1915. Generally, we find a decrease in the allele frequencies of the investigated APOE and FOXO3A variants in individuals from more recent birth cohorts. Assuming a recessive model, this negative trend is significant in 95+ year old individuals homozygous for the APOE ε4 allele (P=0.026) or for the FOXO3A rs7762395 minor allele (P=0.048). For the APOE ε4 allele, the significance is further strengthened when restricting to women (P=0.006). Supportive, but non-significant, trends are found for two of the three tested variants in individuals older than 100years. Altogether, this indicates that cohort differences in selection pressure on survival to the highest ages are reflected in the prevalence of longevity gene variants. Although the effect seems to be moderate, our findings could have an impact on genetic studies of human longevity.


Experimental Gerontology | 2014

Contribution of genetic polymorphisms on functional status at very old age: A gene-based analysis of 38 genes (311 SNPs) in the oxidative stress pathway

Serena Dato; Mette Soerensen; Vincenzo Lagani; Alberto Montesanto; Giuseppe Passarino; Kaare Christensen; Qihua Tan; Lene Christiansen

Preservation of functional ability is a well-recognized marker of longevity. At a molecular level, a major determinant of the physiological decline occurring with aging is the imbalance between production and accumulation of oxidative damage to macromolecules, together with a decreased efficiency of stress response to avoid or repair such damage. In this paper we investigated the association of 38 genes (311 SNPs) belonging to the pro-antioxidant pathways with physical and cognitive performances, by analyzing single SNP and gene-based associations with Hand Grip strength (HG), Activities of Daily Living (ADL), Walking Speed (WS), Mini Mental State Examination (MMSE) and Composite Cognitive Score (CCS) in a Cohort of 1089 Danish nonagenarians. Moreover, for each gene analyzed in the pro-antioxidant pathway, we tested the influence on longitudinal survival. In the whole sample, nominal associations were found for TXNRD1 variability with ADL and WS, NDUFS1 and UCP3 with HG and WS, GCLC and UCP2 with WS (p<0.05). Stronger associations although not holding the multiple comparison correction, were observed between MMSE and NDUFV1, MT1A and GSTP1 variability (p<0.009). Moreover, we found that association between genetic variability in the pro-antioxidant pathway and functional status at old age is influenced by sex. In particular, most significant associations were observed in nonagenarian females, between HG scores and GLRX and UCP3 variability, between ADL levels and TXNRD1, MMSE and MT1A genetic variability. In males, a borderline statistically significant association with ADL level was found for UQCRFS1 gene. Nominally significant associations in relation to survival were found in the female sample only with SOD2, NDUFS1, UCP3 and TXNRD1 variability, the latter two confirming previous observations reported in the same cohort. Overall, our work supports the evidence that genes belonging to the pro-anti-oxidant pathway are able to modulate physical and cognitive performance after the ninth decade of life, finally influencing extreme survival.


Aging Cell | 2013

A novel permutation test for case‐only analysis identifies epistatic effects on human longevity in the FOXO gene family

Qihua Tan; Mette Soerensen; Torben A. Kruse; Kaare Christensen; Lene Christiansen

Genetic interactions or epistasis could make a substantial contribution to variation in human complex traits including longevity. However, detecting epistatic interactions in high dimensional datasets is difficult due to various reasons including multiple testing of correlated tests. We introduce a novel permutation strategy to the case‐only analysis of gene‐by‐gene interaction using multiple SNPs. The method is applied to genes coding for Forkhead box O transcription factors which recently have been associated with human longevity across different populations hypothesizing that epistatic interaction in the regulation and expression of the FOXO gene family could contribute to the human longevity phenotype. Genotype data were collected from 1088 individuals from the Danish 1905 birth cohort aged over 92–93 years with 12 SNPs in the FOXO1a and 15 SNPs in the FOXO3a genes. Our analysis detected a joint effect between rs9486902 in FOXO3a and rs2701858 in FOXO1a that highly significantly contributes to human longevity (OR = 3.23, 95% CI: 2.93–3.53) which is consistent in both males and females. Our results were compared with published studies, and importance of our novel method and findings was discussed.

Collaboration


Dive into the Lene Christiansen's collaboration.

Top Co-Authors

Avatar

Kaare Christensen

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar

Qihua Tan

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar

Mette Soerensen

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar

Serena Dato

University of Calabria

View shared research outputs
Top Co-Authors

Avatar

Kim Brixen

Odense University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bo Abrahamsen

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar

Claus Hagen

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James W. Vaupel

University of Southern Denmark

View shared research outputs
Researchain Logo
Decentralizing Knowledge