Lenka Hernychová
University of Defence
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lenka Hernychová.
Proteomics | 2008
Petr Šotkovský; Martin Hubalek; Lenka Hernychová; Petr Novák; Marie Havranová; Iva Šetinová; Andrea Kitanovičová; Martin Fuchs; Jiří Stulík; Ludmila Tučková
Wheat belongs to six major food allergens inducing IgE‐mediated hypersensitivity reaction manifesting as cutaneous, gastrointestinal, and respiratory symptoms. Although cereals are a staple food item in most diets, only a few wheat proteins causing hypersensitivity have been identified. To characterize wheat allergens, salt‐soluble wheat extracts were separated by 1‐DE and 2‐DE and IgE‐binding proteins were detected by immunoblotting using sera of patients with allergy to ingested wheat. Proteins, frequently recognized by IgE on 2‐DE were analyzed by MALDI‐TOF and QTOF and their spectrum was completed by 1‐DE and LCQDECA nLC‐MS/MS IT technique. Using all three techniques we identified 19 potential wheat allergens such as α‐amylase inhibitors, β‐amylase, profilin, serpin, β‐D‐glucan exohydrolase, and 27K protein. Employing newly developed ELISA, levels of IgE Abs against Sulamit wheat extract and α‐amylase inhibitors type 1 and 3 were quantified and shown to be significantly elevated in sera of allergic patients compared to those of healthy controls. The level of IgE Abs against α‐amylase inhibitor type 3 was lower, slightly above the cut‐off value in the majority of patients sera. Our findings contribute to the identification of wheat allergens aimed to increase the specificity of serum IgE and cell activation diagnostic assays.
Journal of Proteomics | 2011
Ales Tichy; Barbora Salovska; Pavel Rehulka; Jana Klimentova; Jirina Vavrova; Jiri Stulik; Lenka Hernychová
Most of the cellular processes are regulated by reversible phosphorylation of proteins, which in turn plays a critical role in the regulation of gene expression, cell division, signal transduction, metabolism, differentiation, and apoptosis. Mass spectrometry of phosphopeptides obtained from tryptic protein digests has become a powerful tool for characterization of phosphoproteins involved in these processes. However, there is a general need to significantly enrich the phosphopeptide content to compensate their low abundance, insufficient ionization, and suppression effects of non-phosphorylated peptides. This paper aims to give a comprehensive overview on the methods involved in recent phosphoproteomics. It presents a description of contemporary enrichment techniques with references to particular studies and compares different approaches to characterization of phosphoproteome by mass spectrometry.
Journal of Proteome Research | 2010
Lucie Balonova; Lenka Hernychová; Benjamin F. Mann; Marek Link; Zuzana Bilkova; Milos V. Novotny; Jiri Stulik
It appears that most glycoproteins found in pathogenic bacteria are associated with virulence. Despite the recent identification of novel virulence factors, the mechanisms of virulence in Francisella tularensis are poorly understood. In spite of its importance, questions about glycosylation of proteins in this bacterium and its potential connection with bacterial virulence have not been answered yet. In the present study, several putative Francisella tularensis glycoproteins were characterized through the combination of carbohydrate-specific detection and lectin affinity with highly sensitive mass spectrometry utilizing the bottom-up proteomic approach. The protein PilA that was recently found as being possibly glycosylated, as well as other proteins with designation as novel factors of virulence, were among the proteins identified in this study. The reported data compile the list of potential glycoproteins that may serve as a takeoff platform for a further definition of proteins modified by glycans, faciliting a better understanding of the function of protein glycosylation in pathogenicity of Francisella tularensis.
Breast Cancer Research | 2008
Kristyna Brozkova; Eva Budinská; Pavel Bouchal; Lenka Hernychová; Dana Knoflickova; Dalibor Valík; Rostislav Vyzula; Borivoj Vojtesek; Rudolf Nenutil
IntroductionMicroarray-based gene expression profiling represents a major breakthrough for understanding the molecular complexity of breast cancer. cDNA expression profiles cannot detect changes in activities that arise from post-translational modifications, however, and therefore do not provide a complete picture of all biologically important changes that occur in tumors. Additional opportunities to identify and/or validate molecular signatures of breast carcinomas are provided by proteomic approaches. Surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) offers high-throughput protein profiling, leading to extraction of protein array data, calling for effective and appropriate use of bioinformatics and statistical tools.MethodsWhole tissue lysates of 105 breast carcinomas were analyzed on IMAC 30 ProteinChip Arrays (Bio-Rad, Hercules, CA, USA) using the ProteinChip Reader Model PBS IIc (Bio-Rad) and Ciphergen ProteinChip software (Bio-Rad, Hercules, CA, USA). Cluster analysis of protein spectra was performed to identify protein patterns potentially related to established clinicopathological variables and/or tumor markers.ResultsUnsupervised hierarchical clustering of 130 peaks detected in spectra from breast cancer tissue lysates provided six clusters of peaks and five groups of patients differing significantly in tumor type, nuclear grade, presence of hormonal receptors, mucin 1 and cytokeratin 5/6 or cytokeratin 14. These tumor groups resembled closely luminal types A and B, basal and HER2-like carcinomas.ConclusionOur results show similar clustering of tumors to those provided by cDNA expression profiles of breast carcinomas. This fact testifies the validity of the SELDI-TOF MS proteomic approach in such a type of study. As SELDI-TOF MS provides different information from cDNA expression profiles, the results suggest the techniques potential to supplement and expand our knowledge of breast cancer, to identify novel biomarkers and to produce clinically useful classifications of breast carcinomas.
Molecular & Cellular Proteomics | 2012
Lucie Balonova; Benjamin F. Mann; Lukas Cerveny; William R. Alley; Eva Chovancová; Anna-Lena Forslund; Emelie Salomonsson; Åke Forsberg; Jiri Damborsky; Milos V. Novotny; Lenka Hernychová; Jiri Stulik
FTH_0069 is a previously uncharacterized strongly immunoreactive protein that has been proposed to be a novel virulence factor in Francisella tularensis. Here, the glycan structure modifying two C-terminal peptides of FTH_0069 was identified utilizing high resolution, high mass accuracy mass spectrometry, combined with in-source CID tandem MS experiments. The glycan observed at m/z 1156 was determined to be a hexasaccharide, consisting of two hexoses, three N-acetylhexosamines, and an unknown monosaccharide containing a phosphate group. The monosaccharide sequence of the glycan is tentatively proposed as X-P-HexNAc-HexNAc-Hex-Hex-HexNAc, where X denotes the unknown monosaccharide. The glycan is identical to that of DsbA glycoprotein, as well as to one of the multiple glycan structures modifying the type IV pilin PilA, suggesting a common biosynthetic pathway for the protein modification. Here, we demonstrate that the glycosylation of FTH_0069, DsbA, and PilA was affected in an isogenic mutant with a disrupted wbtDEF gene cluster encoding O-antigen synthesis and in a mutant with a deleted pglA gene encoding pilin oligosaccharyltransferase PglA. Based on our findings, we propose that PglA is involved in both pilin and general F. tularensis protein glycosylation, and we further suggest an inter-relationship between the O-antigen and the glycan synthesis in the early steps in their biosynthetic pathways.
Analytical Chemistry | 2008
Lenka Hernychová; Rudolf Toman; Fedor Čiampor; Martin Hubalek; Jana Vackova; Aleš Macela; Ludovit Skultety
Rapid and reliable detection, identification, and typing of bacterial species are necessary in response to natural or terrorist-caused outbreaks of infectious diseases and play crucial roles in diagnosis and efficient treatment. We report here two proteomic approaches with a high potential in the detection and identification of Coxiella burnetii, the causative agent of Q fever. The first of them starts with the acetonitrile (ACN) and trichloroacetic acid extractions of inactivated C. burnetii cells followed by the detection of extracted molecules and ions derived from the inactivated cells by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. In the second approach, identification of the proteins extracted by ACN is accomplished after enzymatic digestion by electrospray tandem mass spectrometry coupled to a nanoscale ultraperformance liquid chromatography (LC-MS/MS). In order to observe morphological differences on the surface structures upon extraction, the inactivated and treated cells of the bacterium were examined by electron microscopy. The LC-MS/MS approach has allowed identification of 20 proteins in the ACN extracts of C. burnetii strain RSA 493 that were observed in more than 3 out of 10 experiments.
Journal of Chromatography A | 2008
Barbora Jankovicova; Šárka Rösnerová; Marcela Slováková; Zuzana Zverinova; Martin Hubalek; Lenka Hernychová; Pavel Rehulka; Jean-Louis Viovy; Zuzana Bilkova
Specific allergen immunotherapy is frequently associated with adverse reactions. Several strategies are being developed to reduce the allergenicity while maintaining the therapeutic benefits. Peptide immunotherapy is one such approach. Methods for the simple and rapid identification of immunogenic epitopes of allergens (i.e. allergenic epitopes) are ongoing and could potentially lead to peptide-based vaccines. An epitope extraction technique, based on biofunctionalized magnetic microspheres self-organized under a magnetic field in a channel of a simple microfluidic device fabricated from polydimethylsiloxane, was applied in the isolation and identification of prospective allergenic epitopes. Similarly to chromatographic column separations, the easily replaceable plug of self-organized beads in the channel benefits especially from an even larger surface-to-volume ratio and an enhanced interaction of the surfaces with passing samples. Ovalbumin, the major protein of egg white and a typical representative of food allergens, was selected as the model molecule. Highly resistant ovalbumin was at first efficiently digested by a magnetic proteolytic reactor with trypsin treated with l-1-tosylamido-2-phenylethyl chloromethyl ketone and the second step, i.e. capture of allergenic epitopes from the mixture of peptides, was performed by a magnetic immunoaffinity carrier with orientedly immobilized rabbit anti-ovalbumin IgG molecules. Captured peptides were released with 0.05% trifluoroacetic acid. The elution fractions were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The peptide fragment of ovalbumin HIATNAVLFFGR (m/z: 1345.75, position: 371-382) was identified as a relevant allergenic epitope in this way. Such a microfluidic magnetic force-based epitope extraction technique applied in the epitope mapping of ovalbumin has the potential to be a significant step towards developing safe and cost-effective epitope-based vaccines.
Proteomics | 2013
Lenka Hernychová; Petr Man; Chandra Verma; Jude Nicholson; Carrie-Anne Sharma; Eva Ruckova; Jin Yuan Teo; Kathryn L. Ball; Borek Vojtesek; Ted R. Hupp
MDM2 is a multidomain protein that functions as an E3 ubiquitin ligase, transcription repressor, mRNA‐binding protein, translation factor, and molecular chaperone. The small molecule Nutlin‐3 has been engineered to bind to the N‐terminal hydrophobic pocket domain of MDM2. This binding of Nutlin‐3 has two consequences: (i) antagonistic effects through competitive disruption of the MDM2‐p53 complex and (ii) agonist effects that allosterically stabilize MDM2 protein–protein interactions that increase p53 ubiquitination as well as nucleophosmin deoligomerization. We present a methodology using a hydrogen/deuterium (H/D) exchange platform that measures Nutlin‐3 binding to the N‐terminal domain of MDM2 (MDM21–126) in order to begin to develop dynamic assays that evaluate MDM2 allostery. In order to localize the regions in MDM2 being suppressed by Nutlin‐3, MDM2 was incubated with the ligand and H/D amide exchange was measured after pepsin digestion. One dynamic segment containing amino acids 55–60 exhibited slower deuterium exchange after Nutlin‐3 binding, reflecting ligand binding within the hydrophobic pocket. However, another dominant suppression of H/D exchange was observed in a motif from amino acids 103–107 that reflects surface hydrophobic residues surrounding the hydrophobic pocket of MDM2. In order to explore the consequences of this latter Nutlin‐3 interaction site on MDM2, the Y104G and L107G mutant series was constructed. The MDM2Y104G and MDM2L107G mutants were fully active in p53 binding. However, the authentic p53‐derived peptide:MDM2Y104G complex exhibited partial resistance to Nutlin‐3 inhibition, while the p53‐mimetic 12.1 peptide:MDM2Y104G complex retained normal Nutlin‐3 responsiveness. These data reveal the existence of a second functional Nutlin‐3‐binding site in a surface hydrophobic patch of MDM2, flanking the hydrophobic pocket. This reveals two modes of peptide binding by MDM2 and highlights the utility of H/D exchange as an assay for measuring allosteric effects in MDM2.
Proteomics | 2010
Klára Konečná; Lenka Hernychová; Marketa Reichelova; Juraj Lenčo; Jana Klimentova; Jiri Stulik; Aleš Macela; Tim Alefantis; Vito G. DelVecchio
The facultative intracellular bacterium Francisella tularensis is the causal agent of the serious infectious disease tularemia. Despite the dynamic progress, which has been made in last few years, important questions regarding Francisella pathogenicity still remain to be answered. Generally, secreted proteins play an important role in pathogenicity of intracellular microbes. In this study, we investigated the protein composition of the culture filtrate proteins of highly virulent F. tularensis subsp. tularensis, strain SCHU S4 and attenuated F. tularensis subsp. holarctica, live vaccine strain using a comparative proteomic analysis. The majority of proteins identified in this study have been implicated in virulence mechanisms of other pathogens, and several have been categorized as having moonlighting properties; those that have more than one unrelated function. This profiling study of secreted proteins resulted in the unique detection of acid phosphatase (precursor) A (AcpA), β‐lactamase, and hypothetical protein FTT0484 in the highly virulent strain SCHU S4 secretome. The release of AcpA may be of importance for F. tularensis subsp. tularensis virulence due to the recently described AcpA role in the F. tularensis escape from phagosomes.
Journal of Biological Chemistry | 2011
Vikram Narayan; Petr Halada; Lenka Hernychová; Yuh Ping Chong; Jitka Zakova; Ted R. Hupp; Borivoj Vojtesek; Kathryn L. Ball
The interferon-regulated transcription factor and tumor suppressor protein IRF-1 is predicted to be largely disordered outside of the DNA-binding domain. One of the advantages of intrinsically disordered protein domains is thought to be their ability to take part in multiple, specific but low affinity protein interactions; however, relatively few IRF-1-interacting proteins have been described. The recent identification of a functional binding interface for the E3-ubiquitin ligase CHIP within the major disordered domain of IRF-1 led us to ask whether this region might be employed more widely by regulators of IRF-1 function. Here we describe the use of peptide aptamer-based affinity chromatography coupled with mass spectrometry to define a multiprotein binding interface on IRF-1 (Mf2 domain; amino acids 106–140) and to identify Mf2-binding proteins from A375 cells. Based on their function as known transcriptional regulators, a selection of the Mf2 domain-binding proteins (NPM1, TRIM28, and YB-1) have been validated using in vitro and cell-based assays. Interestingly, although NPM1, TRIM28, and YB-1 all bind to the Mf2 domain, they have differing amino acid specificities, demonstrating the degree of combinatorial diversity and specificity available through linear interaction motifs.