Lenka Kuglerová
University of British Columbia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lenka Kuglerová.
Ecology | 2014
Lenka Kuglerová; Roland Jansson; Anneli Ågren; Hjalmar Laudon; Birgitta Malm-Renöfält
Riparian vegetation research has traditionally focused on channel-related processes because riparian areas are situated on the edge of aquatic ecosystems and are therefore greatly affected by the flow regime of streams and rivers. However, due to their low topographic position in the landscape, riparian areas receive significant inputs of water and nutrients from uplands. These inputs may be important for riparian vegetation, but their role for riparian plant diversity is poorly known. We studied the relationship between the influx of groundwater (GW) from upland areas and riparian plant diversity and composition along a stream size gradient, ranging from small basins lacking permanent streams to a seventh-order river in northern Sweden. We selected riparian sites with and without GW discharge using a hydrological model describing GW flow accumulation to test the hypothesis that riparian sites with GW discharge harbor plant communities with higher species richness. We further investigated several environmental factors to detect habitat differences between sites differing in GW discharge conditions. Vascular plant species richness was between 15% and 20% higher, depending on the spatial scale sampled, at riparian sites with GW discharge in comparison to non-discharge sites, a pattern that was consistent across all stream sizes. The elevated species richness was best explained by higher soil pH and higher nitrogen availability (manifested as lower soil C/N ratio), conditions which were positively correlated with GW discharge. Base cations and possibly nitrogen transported by groundwater may therefore act as a terrestrial subsidy of riparian vegetation. The stable isotopes 15N and 13C were depleted in soils from GW discharge compared to non-discharge sites, suggesting that GW inputs might also affect nitrogen and carbon dynamics in riparian soils. Despite the fact that many flows of water and nutrients reaching streams are filtered through riparian zones, the importance of these flows for riparian vegetation has not been appreciated. Our results demonstrated strong relationships between GW discharge, plant species richness and environmental conditions across the entire stream size gradient, suggesting that both river hydrology and upland inputs should be considered to fully understand riparian vegetation dynamics.
Ecosystems | 2013
Christer Nilsson; Roland Jansson; Lenka Kuglerová; Lovisa Lind; Lotta Ström
Riparian zones in boreal areas such as humid landscapes on minerogenic soils are characterized by diverse, productive, and dynamic vegetation which will rapidly react to climate change. Climate-change models predict that in most parts of the boreal region these zones will be affected by various combinations of increased temperature, less seasonal variation in runoff, increased average discharge, changes in groundwater supply, and a more dynamic ice regime. Increasing temperatures will favor invasion of exotic species whereas species losses are likely to be minor. The hydrologic changes will cause a narrowing of the riparian zone and, therefore, locally reduce species richness whereas effects on primary production are more difficult to predict. More shifts between freezing and thawing during winter will lead to increased dynamics of ice formation and ice disturbance, potentially fostering a more dynamic and species-rich riparian vegetation. Restoration measures that increase water retention and shade, and that reduce habitats for exotic plant species adjacent to rivers can be applied especially in streams and rivers that have been channelized or deprived of their riparian forest to reduce the effects of climate change on riparian ecosystems.
Ecology | 2015
Lenka Kuglerová; Roland Jansson; Ryan A. Sponseller; Hjalmar Laudon; Birgitta Malm-Renöfält
River systems form dendritic ecological networks that influence the spatial structure of riverine communities. Few empirical studies have evaluated how regional, dispersal-related processes and local habitat factors interact to govern network patterns of species composition. We explore such interactions in a boreal watershed and show that riparian plant species richness increases strongly with drainage size, i.e., with downstream position in the network. Assemblage composition was nested, with new species successively added downstream. These spatial patterns in species composition were related to a combination of local and regional processes. Breadth in local habitat conditions increased downstream in the network, resulting in higher habitat heterogeneity and reduced niche overlap among species, which together with similar trends in disturbance, allows more species to coexist. Riparian edaphic conditions were also increasingly favorable to more species within the regional pool along larger streams, with greater nitrogen availability (manifested as lower C:N) and more rapid mineralization of C and N (as indicated by ratios of stable isotopes) observed with downstream position in the network. The number of species with the capacity for water dispersal increased with stream size, providing a mechanistic link between plant traits and the downstream accumulation of species as more propagules arrive from upstream sites. Similarity in species composition between sites was related to both geographical and environmental distance. Our results provide the first empirical evidence that position in the river network drives spatial patterns in riparian plant diversity and composition by the joint influence of local (disturbance, habitat conditions, and habitat breadth) and regional (dispersal) forces.
AMBIO: A Journal of the Human Environment | 2016
Hjalmar Laudon; Lenka Kuglerová; Ryan A. Sponseller; Martyn N. Futter; Annika Nordin; Kevin Bishop; Tomas Lundmark; Gustaf Egnell; Anneli Ågren
Protecting water quality in forested regions is increasingly important as pressures from land-use, long-range transport of air pollutants, and climate change intensify. Maintaining forest industry without jeopardizing sustainability of surface water quality therefore requires new tools and approaches. Here, we show how forest management can be optimized by incorporating landscape sensitivity and hydrological connectivity into a framework that promotes the protection of water quality. We discuss how this approach can be operationalized into a hydromapping tool to support forestry operations that minimize water quality impacts. We specifically focus on how hydromapping can be used to support three fundamental aspects of land management planning including how to (i) locate areas where different forestry practices can be conducted with minimal water quality impact; (ii) guide the off-road driving of forestry machines to minimize soil damage; and (iii) optimize the design of riparian buffer zones. While this work has a boreal perspective, these concepts and approaches have broad-scale applicability.
Ecosystems | 2016
Lenka Kuglerová; Mats Dynesius; Hjalmar Laudon; Roland Jansson
The distribution of water across landscapes affects the diversity and composition of ecological communities, as demonstrated by studies on variation in vascular plant communities along river networks and in relation to groundwater. However, non-vascular plants have been neglected in this regard. Bryophytes are dominant components of boreal flora, performing many ecosystem functions and affecting ecosystem processes, but how their diversity and species composition vary across catchments is poorly known. We asked how terrestrial assemblages of mosses and liverworts respond to variation in (i) catchment size, going from upland-forest to riparian settings along increasingly large streams and (ii) groundwater discharge conditions. We compared the patterns found for liverworts and mosses to vascular plants in the same set of study plots. Species richness of vascular plants and mosses increased with catchment size, whereas liverworts peaked along streams of intermediate size. All three taxonomic groups responded to groundwater discharge in riparian zones by maintaining high species richness further from the stream channel. Groundwater discharge thus provided riparian-like habitat further away from the streams and also in upland-forest sites compared to the non-discharge counterparts. In addition, soil chemistry (C:N ratio, pH) and light availability were important predictors of vascular plant species richness. Mosses and liverworts responded to the availability of specific substrates (stones and topographic hollows), but were also affected by soil C:N. Overall, assemblages of mosses and vascular plants exhibited many similarities in how they responded to hydrological gradients, whereas the patterns of liverworts differed from the other two groups.
Water Resources Research | 2016
Tejshree Tiwari; Johanna Lundström; Lenka Kuglerová; Hjalmar Laudon; Karin Öhman; Anneli Ågren
Traditional approaches aiming at protecting surface waters from the negative impacts of forestry often focus on retaining fixed width buffer zones around waterways. While this method is relatively simple to design and implement, it has been criticized for ignoring the spatial heterogeneity of biogeochemical processes and biodiversity in the riparian zone. Alternatively, a variable width buffer zone adapted to site-specific hydrological conditions has been suggested to improve the protection of biogeochemical and ecological functions of the riparian zone. However, little is known about the monetary value of maintaining hydrologically adapted buffer zones compared to the traditionally used fixed width ones. In this study, we created a hydrologically adapted buffer zone by identifying wet areas and groundwater discharge hotspots in the riparian zone. The opportunity cost of the hydrologically adapted riparian buffer zones was then compared to that of the fixed width zones in a meso-scale boreal catchment to determine the most economical option of designing riparian buffers. The results show that hydrologically adapted buffer zones were cheaper per hectare than the fixed width ones when comparing the total cost. This was because the hydrologically adapted buffers included more wetlands and low productive forest areas than the fixed widths. As such, the hydrologically adapted buffer zones allows more effective protection of the parts of the riparian zones that are ecologically and biogeochemically important and more sensitive to disturbances without forest landowners incurring any additional cost than fixed width buffers.
Water Resources Research | 2017
J. A. Leach; William Lidberg; Lenka Kuglerová; Andrés Peralta-Tapia; Anneli Ågren; Hjalmar Laudon
Groundwater discharge along streams exerts an important influence on biogeochemistry and thermal regimes of aquatic ecosystems. A common approach for predicting locations of shallow lateral groundwater discharge is to use digital elevation models (DEMs) combined with upslope contributing area algorithms. We evaluated a topography-based prediction of subsurface discharge zones along a 1500 m headwater stream reach using temperature and water isotope tracers. We deployed fiber-optic distributed temperature sensing instrumentation to monitor stream temperature at 0.25 m intervals along the reach. We also collected samples of stream water for the analysis of its water isotope composition at 50 m intervals on five occasions representing distinct streamflow conditions before, during, and after a major rain event. The combined tracer evaluation showed that topography-predicted locations of groundwater discharge were generally accurate; however, predicted magnitude of groundwater inflows estimated from upslope contributing area did not always agree with tracer estimates. At the catchment scale, lateral inflows were an important source of streamflow at base flow and peak flow during a major rain event; however, water from a headwater lake was the dominant water source during the event hydrograph recession. Overall, this study highlights potential utility and limitations of predicting locations and contributions of lateral groundwater discharge zones using topography-based approaches in humid boreal regions.
Ecohydrology | 2017
Lenka Kuglerová; Kamila Botková; Roland Jansson
The ecological effects of stream restoration were evaluated by comparing riparian vegetation, flooding, and habitat properties between channelized and two types of restored streams in northern Swed ...
Forest Ecology and Management | 2014
Lenka Kuglerová; Anneli Ågren; Roland Jansson; Hjalmar Laudon
Journal of Hydrology | 2013
Jakob Schelker; Lenka Kuglerová; Karin Eklöf; Kevin Bishop; Hjalmar Laudon