Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lenka Mahríková is active.

Publication


Featured researches published by Lenka Mahríková.


Parasites & Vectors | 2017

Molecular evidence of Rickettsia spp. in ixodid ticks and rodents in suburban, natural and rural habitats in Slovakia

Lenka Minichová; Zuzana Hamšíková; Lenka Mahríková; Mirko Slovák; Elena Kocianová; Mária Kazimírová; Ľudovít Škultéty; Katarína Štefanidesová; Eva Špitalská

BackgroundNatural foci of tick-borne spotted fever group (SFG) rickettsiae of public health concern have been found in Slovakia, but the role of rodents in their circulation is unclear. Ticks (Ixodes ricinus, Ixodes trianguliceps, Dermacentor marginatus, Dermacentor reticulatus, Haemaphysalis concinna and Haemaphysalis inermis) and tissues of rodents (Apodemus flavicollis, Apodemus sylvaticus, Myodes glareolus, Microtus arvalis, Microtus subterraneus and Micromys minutus) were examined for the presence of SFG rickettsiae and Coxiella burnetii by molecular methods. Suburban, natural and rural habitats were monitored to acquire information on the role of ticks and rodents in the agents’ maintenance in various habitat types of Slovakia.ResultsThe overall prevalence of rickettsial infection in questing I. ricinus and D. marginatus was 6.6% and 21.4%, respectively. Rickettsia helvetica, R. monacensis and non-identified rickettsial species were detected in I. ricinus, whereas R. slovaca and R. raoultii were identified in D. marginatus. Rickettsia spp.-infected I. ricinus occurred during the whole tick questing period. Rickettsia helvetica dominated (80.5%) followed by R. monacensis (6.5%). The species were present in all studied habitats. Rickettsia slovaca (66.7%) and R. raoultii (33.3%) were identified in D. marginatus from the rural habitat. Apodemus flavicollis was the most infested rodent species with I. ricinus, but My. glareolus carried the highest proportion of Rickettsia-positive I. ricinus larvae. Only 0.5% of rodents (A. flavicollis) and 5.2% of engorged I. ricinus removed from My. glareolus, A. flavicollis and M. arvalis were R. helvetica- and R. monacensis-positive. Coxiella burnetii was not detected in any of the tested samples. We hypothesize that rodents could play a role as carriers of infected ticks and contribute to the maintenance of rickettsial pathogens in natural foci.ConclusionsLong-term presence of SFG Rickettsia spp. was confirmed in questing ticks from different habitat types of Slovakia. The results suggest a human risk for infection with the pathogenic R. helvetica, R. monacensis, R. slovaca and R. raoultii.


Microbial Ecology | 2017

Borrelia miyamotoi and Co-Infection with Borrelia afzelii in Ixodes ricinus Ticks and Rodents from Slovakia

Zuzana Hamšíková; Claudia Coipan; Lenka Mahríková; Lenka Minichová; Hein Sprong; Mária Kazimírová

Borrelia miyamotoi causes relapsing fever in humans. The occurrence of this spirochete has been reported in Ixodes ricinus and wildlife, but there are still gaps in the knowledge of its eco-epidemiology and public health impact. In the current study, questing I. ricinus (nymphs and adults) and skin biopsies from rodents captured in Slovakia were screened for the presence of B. miyamotoi and Borrelia burgdorferi s.l. DNA. The prevalence of B. miyamotoi and B. burgdorferi s.l. in questing ticks was 1.7 and 16.9%, respectively. B. miyamotoi was detected in Apodemus flavicollis (9.3%) and Myodes glareolus (4.4%). In contrast, B. burgdorferi s.l. was identified in 11.9% of rodents, with the highest prevalence in Microtus arvalis (68.4%) and a lower prevalence in Apodemus spp. (8.4%) and M. glareolus (12.4%). Borrelia afzelii was the prevailing genospecies infecting questing I. ricinus (37.9%) and rodents (72.2%). Co-infections of B. miyamotoi and B. burgdorferi s.l. were found in 24.1 and 9.3% of the questing ticks and rodents, respectively, whereas the proportion of ticks and rodents co-infected with B. miyamotoi and B. afzelii was 6.9 and 7.0%, respectively. The results suggest that B. miyamotoi and B. afzelii share amplifying hosts. The sequences of the B. miyamotoi glpQ gene fragment from our study showed a high degree of identity with sequences of the gene amplified from ticks and human patients in Europe. The results seem to suggest that humans in Slovakia are at risk of contracting tick-borne relapsing fever, and in some cases together with Lyme borreliosis.


Ticks and Tick-borne Diseases | 2016

Natural foci of Borrelia lusitaniae in a mountain region of Central Europe.

Veronika Rusňáková Tarageľová; Lenka Mahríková; Diana Selyemová; Radovan Václav; Markéta Derdáková

Lyme borreliosis is the most prevalent tick-borne disease in Europe. It is caused by spirochaetes of the Borrelia burgdorferi sensu lato (s.l.) complex and transmitted to humans by ticks of the genus Ixodes. Borrelia afzelii, Borrelia garinii, and Borrelia valaisiana are the most common genospecies in Central Europe. In contrast, Borrelia lusitaniae predominates in Mediterranean countries such as Portugal, Morocco, and Tunisia. In Slovakia, its prevalence is low and restricted to only a few sites. The aim of our research was to study the expansion of ticks into higher altitudes in the ecosystem of the Malá Fatra mountains (north Slovakia) and their infection with B. burgdorferi s.l. pathogens. Questing ticks were collected by flagging in seven years (2004, 2006-2011) at three different altitudes: low (630-660 m above sea level (ASL)), intermediate (720-750 m ASL), and high (1040-1070 m ASL). Tick abundance was highest at the lowest altitude and lowest at the highest altitude. The average infection prevalence of B. burgdorferi s.l. in nymphs and adults was 16.8% and 36.2%, respectively. The number of infected ticks decreased from 38.5% at the lowest altitude to 4.4% at the highest altitude. B. lusitaniae was the most frequently found genospecies (>60% of the ticks found positive for B. burgdorferi s.l.) in all sites in all the studied years with the exception of 2008 when B. afzelii predominated (62%). Our study confirms the spread of Ixodes ricinus ticks to higher altitudes in Slovakia. The discovery that our mountain study sites were a natural foci of B. lusitaniae was unexpected because this genospecies is usually associated with lizards and xerothermic habitats.


Parasitology Research | 2017

Diversity and prevalence of Bartonella species in small mammals from Slovakia, Central Europe

Eva Špitalská; Lenka Minichová; Elena Kocianová; Ľudovít Škultéty; Lenka Mahríková; Zuzana Hamšíková; Mirko Slovák; Mária Kazimírová

Wild-living rodents are important hosts for zoonotic pathogens. Bartonella infections are widespread in rodents; however, in Slovakia, knowledge on the prevalence of these bacteria in small mammals is limited. We investigated the prevalence and diversity of Bartonella species in the spleens of 640 rodents of six species (Apodemus flavicollis, Apodemus sylvaticus, Myodes glareolus, Microtus arvalis, Microtus subterraneus, and Micromys minutus) and in the European mole (Talpa europaea) from three different habitat types in south-western and central Slovakia. Overall, the prevalence of Bartonella spp. in rodents was 64.8%; a rate of 73.8% was found in natural habitat (deciduous forest), 56.0% in suburban forest park and 64.9% in rural habitat. Bartonella spp. were detected in 63.0% of A. flavicollis, 69% of My. glareolus and 61.1% of M. arvalis and in T. europaea. However, Bartonella were not found in the other examined rodents. Molecular analyses of the 16S–23S rRNA intergenic spacer region revealed the presence of four different Bartonella spp. clusters. We identified B. taylorii, B. rochalimae, B. elizabethae, B. grahamii and Bartonella sp. wbs11 in A. flavicollis and My. glareolus. Bartonella genotypes ascribed to B. taylorii and B. rochalimae were found in M. arvalis. B. taylorii was identified in T. europaea. Questing Ixodes ricinus ticks that were collected at the study sites were not infected with Bartonella. This study improves our understanding of the ecoepidemiology of Bartonella spp. in Europe and underlines the necessity for further research on Bartonella-host-vector associations and their consequences on animal and human health in Slovakia.


Parasites & Vectors | 2018

Diverse tick-borne microorganisms identified in free-living ungulates in Slovakia

Mária Kazimírová; Zuzana Hamšíková; Eva Špitalská; Lenka Minichová; Lenka Mahríková; Radoslav Caban; Hein Sprong; Manoj Fonville; Leonhard Schnittger; Elena Kocianová

BackgroundFree-living ungulates are hosts of ixodid ticks and reservoirs of tick-borne microorganisms in central Europe and many regions around the world. Tissue samples and engorged ticks were obtained from roe deer, red deer, fallow deer, mouflon, and wild boar hunted in deciduous forests of south-western Slovakia. DNA isolated from these samples was screened for the presence of tick-borne microorganisms by PCR-based methods.ResultsTicks were found to infest all examined ungulate species. The principal infesting tick was Ixodes ricinus, identified on 90.4% of wildlife, and included all developmental stages. Larvae and nymphs of Haemaphysalis concinna were feeding on 9.6% of wildlife. Two specimens of Dermacentor reticulatus were also identified. Ungulates were positive for A. phagocytophilum and Theileria spp. Anaplasma phagocytophilum was found to infect 96.1% of cervids, 88.9% of mouflon, and 28.2% of wild boar, whereas Theileria spp. was detected only in cervids (94.6%). Importantly, a high rate of cervids (89%) showed mixed infections with both these microorganisms. In addition to A. phagocytophilum and Theileria spp., Rickettsia helvetica, R. monacensis, unidentified Rickettsia sp., Coxiella burnetii, “Candidatus Neoehrlichia mikurensis”, Borrelia burgdorferi (s.l.) and Babesia venatorum were identified in engorged I. ricinus. Furthermore, A. phagocytophilum, Babesia spp. and Theileria spp. were detected in engorged H. concinna. Analysis of 16S rRNA and groEL gene sequences revealed the presence of five and two A. phagocytophilum variants, respectively, among which sequences identified in wild boar showed identity to the sequence of the causative agent of human granulocytic anaplasmosis (HGA). Phylogenetic analysis of Theileria 18S rRNA gene sequences amplified from cervids and engorged I. ricinus ticks segregated jointly with sequences of T. capreoli isolates into a moderately supported monophyletic clade.ConclusionsThe findings indicate that free-living ungulates are reservoirs for A. phagocytophilum and Theileria spp. and engorged ixodid ticks attached to ungulates are good sentinels for the presence of agents of public and veterinary concern. Further analyses of the A. phagocytophilum genetic variants and Theileria species and their associations with vector ticks and free-living ungulates are required.


International Journal of Environmental Research and Public Health | 2018

Effect of Climate and Land Use on the Spatio-Temporal Variability of Tick-Borne Bacteria in Europe

Roberto Rosà; Verónica Andreo; Valentina Tagliapietra; Ivana Baráková; Daniele Arnoldi; Heidi C. Hauffe; Mattia Manica; Fausta Rosso; Lucia Blaňarová; Martin Bona; Markéta Derdáková; Zuzana Hamšíková; Mária Kazimírová; Jasna Kraljik; Elena Kocianová; Lenka Mahríková; Lenka Minichová; Ladislav Mošanský; Mirko Slovák; Michal Stanko; Eva Špitalská; Els Ducheyne; Markus Neteler; Zdenek Hubálek; Ivo Rudolf; Kristyna Venclikova; Cornelia Silaghi; Evelyn Overzier; Róbert Farkas; Gábor Földvári

The incidence of tick-borne diseases caused by Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum and Rickettsia spp. has been rising in Europe in recent decades. Early pre-assessment of acarological hazard still represents a complex challenge. The aim of this study was to model Ixodes ricinus questing nymph density and its infection rate with B. burgdorferi s.l., A. phagocytophilum and Rickettsia spp. in five European countries (Italy, Germany, Czech Republic, Slovakia, Hungary) in various land cover types differing in use and anthropisation (agricultural, urban and natural) with climatic and environmental factors (Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), Land Surface Temperature (LST) and precipitation). We show that the relative abundance of questing nymphs was significantly associated with climatic conditions, such as higher values of NDVI recorded in the sampling period, while no differences were observed among land use categories. However, the density of infected nymphs (DIN) also depended on the pathogen considered and land use. These results contribute to a better understanding of the variation in acarological hazard for Ixodes ricinus transmitted pathogens in Central Europe and provide the basis for more focused ecological studies aimed at assessing the effect of land use in different sites on tick–host pathogens interaction.


Parasites & Vectors | 2015

Anaplasma phagocytophilum prevalence in ticks and rodents in an urban and natural habitat in South-Western Slovakia

Zuzana Svitálková; Danka Haruštiaková; Lenka Mahríková; Lenka Berthová; Mirko Slovák; Elena Kocianová; Mária Kazimírová


Experimental and Applied Acarology | 2016

Seasonal analysis of Rickettsia species in ticks in an agricultural site of Slovakia.

Eva Špitalská; Michal Stanko; Ladislav Mošanský; Jasna Kraljik; Dana Miklisová; Lenka Mahríková; Martin Bona; Mária Kazimírová


Parasites & Vectors | 2016

Babesia spp. in ticks and wildlife in different habitat types of Slovakia.

Zuzana Hamšíková; Mária Kazimírová; Danka Haruštiaková; Lenka Mahríková; Mirko Slovák; Lenka Berthová; Elena Kocianová; Leonhard Schnittger


Parasitology Research | 2016

Molecular detection and phylogenetic analysis of Hepatozoon spp. in questing Ixodes ricinus ticks and rodents from Slovakia and Czech Republic

Zuzana Hamšíková; Cornelia Silaghi; Ivo Rudolf; Kristýna Venclíková; Lenka Mahríková; Mirko Slovák; Jan Mendel; Hana Blažejová; Lenka Berthová; Elena Kocianová; Zdeněk Hubálek; Leonhard Schnittger; Mária Kazimírová

Collaboration


Dive into the Lenka Mahríková's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elena Kocianová

Slovak Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Mirko Slovák

Slovak Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eva Špitalská

Slovak Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Lenka Minichová

Slovak Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Lenka Berthová

Slovak Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jasna Kraljik

Comenius University in Bratislava

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michal Stanko

Slovak Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge