Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lenka Maletínská is active.

Publication


Featured researches published by Lenka Maletínská.


Journal of Endocrinology | 2014

Obesity-related hypertension: possible pathophysiological mechanisms

Ivana Vaněčková; Lenka Maletínská; Michal Behuliak; Veronika Nagelová; Josef Zicha; Jaroslav Kuneš

Hypertension is one of the major risk factors of cardiovascular diseases, but despite a century of clinical and basic research, the discrete etiology of this disease is still not fully understood. The same is true for obesity, which is recognized as a major global epidemic health problem nowadays. Obesity is associated with an increasing prevalence of the metabolic syndrome, a cluster of risk factors including hypertension, abdominal obesity, dyslipidemia, and hyperglycemia. Epidemiological studies have shown that excess weight gain predicts future development of hypertension, and the relationship between BMI and blood pressure (BP) appears to be almost linear in different populations. There is no doubt that obesity-related hypertension is a multifactorial and polygenic trait, and multiple potential pathogenetic mechanisms probably contribute to the development of higher BP in obese humans. These include hyperinsulinemia, activation of the renin-angiotensin-aldosterone system, sympathetic nervous system stimulation, abnormal levels of certain adipokines such as leptin, or cytokines acting at the vascular endothelial level. Moreover, some genetic and epigenetic mechanisms are also in play. Although the full manifestation of both hypertension and obesity occurs predominantly in adulthood, their roots can be traced back to early ontogeny. The detailed knowledge of alterations occurring in the organism of experimental animals during particular critical periods (developmental windows) could help to solve this phenomenon in humans and might facilitate the age-specific prevention of human obesity-related hypertension. In addition, better understanding of particular pathophysiological mechanisms might be useful in so-called personalized medicine.


Molecular and Cellular Endocrinology | 2011

The Peptidic GHS-R antagonist [D-Lys3]GHRP-6 markedly improves adiposity and related metabolic abnormalities in a mouse model of postmenopausal obesity

Lenka Maletínská; Resha Matyšková; Jana Maixnerová; David Sýkora; Miroslava Pýchová; Andrea Špolcová; Miroslava Blechová; J. Drápalová; Zdenka Lacinova; Martin Haluzik; Blanka Železná

It was demonstrated that estrogen deficiency and consuming high fat (HF) diet enhanced orexigenic activity of ghrelin. Therefore, we hypothesized that antagonizing of ghrelin action would attenuate food intake and body weight in mice obese both from ovariectomy (OVX) and feeding a HF diet. Ghrelin receptor antagonist [D-Lys(3)]GHRP-6 after seven days of subcutaneous treatment markedly decreased food intake in OVX mice fed both HF and standard diets; furthermore, it reduced body weight and blood glucose, insulin and leptin, and increased β-hydroxybutyrate level and uncoupling-protein-1 mRNA in brown adipose tissue. Pair-feeding revealed that effect of [D-Lys(3)]GHRP-6 was primary anorexigenic. Estrogen supplementation reduced anorexigenic effects of [D-Lys(3)]GHRP-6. OVX [D-Lys(3)]GHRP-6 treatment in mice on HF diet resulted in markedly increased circulating level and liver expression of a major metabolic regulator, fibroblast growth factor 21. Our data suggest that ghrelin antagonists could be especially beneficial in individuals with common obesity combined with estrogen deficiency.


BMC Neuroscience | 2008

Synergistic effect of CART (cocaine- and amphetamine-regulated transcript) peptide and cholecystokinin on food intake regulation in lean mice.

Lenka Maletínská; Jana Maixnerová; Resha Matyšková; Renata Haugvicová; Alexander Kiss; Blanka Železná

BackgroundCART (cocaine- and amphetamine-regulated transcript) peptide and cholecystokinin (CCK) are neuromodulators involved in feeding behavior. This study is based on previously found synergistic effect of leptin and CCK on food intake and our hypothesis on a co-operation of the CART peptide and CCK in food intake regulation and Fos activation in their common targets, the nucleus tractus solitarii of the brainstem (NTS), the paraventricular nucleus (PVN), and the dorsomedial nucleus (DMH) of the hypothalamus.ResultsIn fasted C57BL/6 mice, the anorexigenic effect of CART(61-102) in the doses of 0.1 or 0.5 μg/mouse was significantly enhanced by low doses of CCK-8 of 0.4 or 4 μg/kg, while 1 mg/kg dose of CCK-A receptor antagonist devazepide blocked the effect of CART(61-102) on food intake. After simultaneous administration of 0.1 μg/mouse CART(61-102) and of 4 μg/kg of CCK-8, the number of Fos-positive neurons in NTS, PVN, and DMH was significantly higher than after administration of each particular peptide. Besides, CART(61-102) and CCK-8 showed an additive effect on inhibition of the locomotor activity of mice in an open field test.ConclusionThe synergistic and long-lasting effect of the CART peptide and CCK on food intake and their additive effect on Fos immunoreactivity in their common targets suggest a co-operative action of CART peptide and CCK which could be related to synergistic effect of leptin on CCK satiety.


Peptides | 2007

Structure–activity relationship of CART (cocaine- and amphetamine-regulated transcript) peptide fragments

Jana Maixnerová; Jan Hlaváček; Darja Blokešová; Wioleta Kowalczyk; Tomáš Elbert; Miloslav Šanda; Miroslava Blechová; Blanka Železná; Jiřina Slaninová; Lenka Maletínská

CART (cocaine- and amphetamine-regulated transcript) peptides are neuropeptides abundant in the central nervous system and periphery found to be involved in the regulation of food intake behavior and other physiological processes. Recently, we reported specific binding of (125)I-CART(61-102) to the rat adrenal pheochromocytoma cell line PC12, both intact cells and cell membranes. In this study, several fragments of CART(61-102) corresponding to its structural loops were synthesized and tested for their potency in binding experiments using PC12 intact cells and cell membranes and in feeding test with fasted mice. From all shorter peptides tested, only CART(74-86) and CART(62-86) containing disulfide bridges kept partial binding potency of the original molecule with K(i) in 10(-5) and 10(-4)M range. However, these fragments were not able to inhibit food intake after their central administration up to a dose of 4 nmol/mouse. The results showed that a compact structure containing three disulfide bridges is necessary for preservation of full biological activity of CART peptides.


Hormone and Metabolic Research | 2010

Estradiol supplementation helps overcome central leptin resistance of ovariectomized mice on a high fat diet.

Resha Matyšková; Blanka Železná; Jana Maixnerová; D. Koutová; Martin Haluzik; Lenka Maletínská

Ovariectomized mice on a high fat diet represent a model of diet-induced obesity during estrogen deficiency. Here, we tested the hypothesis that sensitivity to centrally administered leptin in ovariectomized mice with diet-induced obesity could be restored by estrogen supplementation. Ovariectomized C57BL/6 female mice were fed either a standard or high fat diet until they were 27 weeks old. Ovariectomized mice on a high fat diet developed extreme obesity and hyperleptinemia and moderate hyperinsulinemia compared to those on a standard diet. For the last 4 weeks, 17beta-estradiol-3-benzoate or its vehicle was administered subcutaneously in a 4-day cyclic regimen. Finally, leptin or saline was injected into the third ventricle, and food intake and body weight were measured for 36 h. In ovariectomized mice fed a standard diet, the decrease in food intake and body weight was significant and was pronounced in 17beta-estradiol-3-benzoate-supplemented mice. The response to centrally injected leptin in ovariectomized mice on a high fat diet was insignificant, whereas in 17beta-estradiol-3-benzoate-supplemented mice, the effect was significant, particularly with respect to body weight. We showed for the first time that central insensitivity to leptin in ovariectomized diet-induced obese mice was restored with 17beta-estradiol-3-benzoate supplementation, which also attenuated most of the parameters of metabolic syndrome. Only circulating adiponectin, a peripheral insulin sensitivity marker, was lowered following 17beta-estradiol-3-benzoate administration in both high fat and standard diet-fed ovariectomized mice, despite of decreased or unchanged glycemia, respectively.


Regulatory Peptides | 2006

Effect of cholecystokinin on feeding is attenuated in monosodium glutamate obese mice

Lenka Maletínská; Resha Shamas Toma; Alexander Kiss; Jiřina Slaninová; Martin Haluzik; Blanka Železná

Treatment of newborn mice with monosodium glutamate (MSG) is neurotoxic for hypothalamic arcuate nucleus (ARC) and causes obesity. In the MSG-treated 16-week-old NMRI mice, we detected specific ablation of ARC neuronal cells, 8 times higher fat to body mass ratio but unchanged body mass compared to controls, advanced hyperglycemia and hyperinsulinemia--both more pronounced in males, and hyperleptinemia--more severe in females. After fasting, the MSG-treated mice showed attenuated food intake compared to controls. Cholecystokinin octapeptide, which decreased food intake in a dose-dependent manner in 24 h fasted controls, did not significantly affect food intake in the MSG-treated animals. We propose that the obesity-related changes in the feeding behavior of the MSG-treated obese mice were the result of missing leptin and insulin receptors in ARC and consequent altered neuropeptide signaling. This makes the MSG model suitable for clarifying generally the central control of food intake.


Brain Research | 2013

Neuropeptide FF analog RF9 is not an antagonist of NPFF receptor and decreases food intake in mice after its central and peripheral administration

Lenka Maletínská; Anežka Tichá; Veronika Nagelová; Andrea Špolcová; Miroslava Blechová; Tomáš Elbert; Blanka Železná

Neuropeptide FF (NPFF) belongs to the RF-amide family of peptides bearing the identical C-terminal amino acid sequence (R-F-NH2). In addition to NPFF, prolactin-releasing peptide (PrRP), another RF-amide, binds to NPFF receptors with high affinity. A selective antagonist of PrRP has not yet been identified, but a selective antagonist of NPFF, 1-adamantanecarbonyl-RF-NH2 (RF9), was recently reported to antagonize the hyperalgesic effect of NPFF after central administration to mice. In the present study, RF9 competed with NPFF analog D-Y-L-(N-Me)-F-Q-P-Q-R-F-NH2 (1DMe) in binding to CHO-K1 cell membranes transfected with the human NPFF2 receptor. In rat pituitary RC-4B/C cells, where the expression of the NPFF2 receptor was proved by immunodetection, RF9 did not reverse the phosphorylation of MAPK/ERK1/2 induced by [Tyr(1)]NPFF. In vivo experiments with fasted mice confirmed that centrally injected [Tyr(1)]NPFF significantly lowered food intake. However, RF9, a putative NPFF2 antagonist, did not reverse the anorectic effect of [Tyr(1)]NPFF. Paradoxically, RF9 itself exhibited an anorectic effect in fasted mice not only after intracerebroventricular but also after subcutaneous administration. This finding casts doubt on claims that RF9 is an NPFF antagonist.


International Journal of Obesity | 2015

Novel lipidized analogs of prolactin-releasing peptide have prolonged half-lives and exert anti-obesity effects after peripheral administration.

Lenka Maletínská; Veronika Nagelová; Ticha A; Jana Zemenová; Martina Holubová; Andrea Špolcová; Barbora Mikulášková; Miroslava Blechová; David Sýkora; Lacinová Z; Martin Haluzik; Blanka Železná; Jaroslav Kuneš

Objectives:Obesity is a frequent metabolic disorder but an effective therapy is still scarce. Anorexigenic neuropeptides produced and acting in the brain have the potential to decrease food intake and ameliorate obesity but are ineffective after peripheral application. We have designed lipidized analogs of prolactin-releasing peptide (PrRP), which is involved in energy balance regulation as demonstrated by obesity phenotypes of both PrRP- and PrRP-receptor-knockout mice.Results:Lipidized PrRP analogs showed binding affinity and signaling in PrRP receptor-expressing cells similar to natural PrRP. Moreover, these analogs showed high binding affinity also to anorexigenic neuropeptide FF-2 receptor. Peripheral administration of myristoylated and palmitoylated PrRP analogs to fasted mice induced strong and long-lasting anorexigenic effects and neuronal activation in the brain areas involved in food intake regulation. Two-week-long subcutaneous administration of palmitoylated PrRP31 and myristoylated PrRP20 lowered food intake, body weight and improved metabolic parameters, and attenuated lipogenesis in mice with diet-induced obesity.Conclusions:Our data suggest that the lipidization of PrRP enhances stability and mediates its effect in central nervous system. Strong anorexigenic and body-weight-reducing effects make lipidized PrRP an attractive candidate for anti-obesity treatment.


Peptides | 2011

Characterization of prolactin-releasing peptide: binding, signaling and hormone secretion in rodent pituitary cell lines endogenously expressing its receptor.

Jana Maixnerová; Andrea Špolcová; Miroslava Pýchová; Miroslava Blechová; Tomáš Elbert; Martina Řezáčová; Blanka Železná; Lenka Maletínská

The recently discovered prolactin-releasing peptide (PrRP) binds to the PrRP receptor and is involved in endocrine regulation and energy metabolism. However, its main physiological role is currently unknown. Two biologically active isoforms of PrRP exist: the 31 (PrRP31) and the 20 (PrRP20) amino acid forms, which both contain a C-terminal Phe amide sequence. In the present study, the PrRP receptor was immunodetected in three rodent tumor pituitary cell lines: GH3, AtT20 and RC-4B/C cells. The saturation binding of radioiodinated PrRP31 to intact cells demonstrated a K(d) in the 10(-9)M range and a B(max) in the range of tens of thousands binding sites per cell. For binding to RC-4B/C cells, both PrRP31 and PrRP20 competed with (125)I-PrRP31 with a similar K(i). The C-terminal analog PrRP13 showed lower binding potency compared to PrRP31 and PrRP20. All PrRP analogs increased the phosphorylation of MAPK/ERK1/2 (mitogen-activated phosphorylase/extracellular-regulated kinase) and CREB (cAMP response element-binding protein) in RC-4B/C cells. Additionally, prolactin release was induced by the PrRP analogs in a dose-dependent manner in RC-4B/C cells. Finally, food intake after intracerebroventricular administration of PrRP analogs in fasted mice was followed. Both PrRP31 and PrRP20 decreased food intake, but PrRP13 did not show significant effect. Studies on pituitary cell lines expressing the PrRP receptor are more physiologically relevant than those on cells transfected with the receptor. This cell type can be used as a model system for pharmacological studies searching for PrRP antagonists and stable effective PrRP agonists, as these drugs may have potential as anti-obesity agents.


BMC Neuroscience | 2014

Deficient hippocampal insulin signaling and augmented Tau phosphorylation is related to obesity- and age-induced peripheral insulin resistance: a study in Zucker rats

Andrea Spolcova; Barbora Mikulášková; Katarína Kršková; Lucia Gajdosechova; Stefan Zorad; Rafał Olszanecki; Maciej Suski; Beata Bujak-Giżycka; Blanka Železná; Lenka Maletínská

BackgroundInsulin signaling and Tau protein phosphorylation in the hippocampi of young and old obese Zucker fa/fa rats and their lean controls were assessed to determine whether obesity-induced peripheral insulin resistance and aging are risk factors for central insulin resistance and whether central insulin resistance is related to the pathologic phosphorylation of the Tau protein.ResultsAging and obesity significantly attenuated the phosphorylation of the insulin cascade kinases Akt (protein kinase B, PKB) and GSK-3β (glycogen synthase kinase 3β) in the hippocampi of the fa/fa rats. Furthermore, the hyperphosphorylation of Tau Ser396 alone and both Tau Ser396 and Thr231 was significantly augmented by aging and obesity, respectively, in the hippocampi of these rats.ConclusionsBoth age-induced and obesity-induced peripheral insulin resistance are associated with central insulin resistance that is linked to hyperTau phosphorylation. Peripheral hyperinsulinemia, rather than hyperglycemia, appears to promote central insulin resistance and the Tau pathology in fa/fa rats.

Collaboration


Dive into the Lenka Maletínská's collaboration.

Top Co-Authors

Avatar

Blanka Železná

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Martin Haluzik

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Martina Holubová

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Andrea Špolcová

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Jana Maixnerová

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Jaroslav Kuneš

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Jiřina Slaninová

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Miroslava Blechová

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Veronika Nagelová

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Zdenko Procházka

Czechoslovak Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge