Lenka Pavlů
Czech University of Life Sciences Prague
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lenka Pavlů.
Folia Geobotanica | 2003
V. Pavlů; Michal Hejcman; Lenka Pavlů; Jan Gaisler
The effect of different grazing regimes on pasture vegetation was studied during the intensive grazing of heifers in the Jizerské hory mountains during 1993–1997. The vegetation was monitored in 3 pairs of permanent 1×1 m plots using a continuous grid of nine 0.33 × 0.33 m subplots. We applied continuous stocking and rotational grazing. Vegetation varied as a result of time and differences between treatments. Several prostrate dicotyledonous species (Trifolium repens, Taraxacum sp.,Bellis perennis andLeontodon autumnalis) increased under continuous stocking. This treatment also promoted the growth of the perennial grassLolium perenne, which was able to cope with frequent defoliation. Tall grasses sensitive to frequent defoliation (Poa trivialis, Holcus mollis, Alopecurus pratensis, Dactylis glomerata andElytrigia repens) were more abundant in rotationally grazed paddocks. Species diversity was not significantly influenced by the different grazing systems. The decrease in the potential sward height under continuous stocking revealed the replacing of tall dominants by lower species. Our results indicate that different grazing systems alter the composition and structure of grassland vegetation. Defining the intensity of grazing under continuous stocking or rotational grazing is complex due to the different stocking rates and the heights of sward during a grazing season. Information about pasture management should therefore involve not only grazing intensity but also the grazing system used.
Journal of Hazardous Materials | 2015
Aleš Vaněk; Zuzana Grösslová; Martin Mihaljevič; Vojtěch Ettler; Vladislav Chrastný; Michael Komárek; Václav Tejnecký; Ondřej Drábek; Vít Penížek; Ivana Galušková; Barbora Vaněčková; Lenka Pavlů; Christopher Ash
The environmental stability of Tl-rich sphalerite in two contrasting soils was studied. Rhizospheric conditions were simulated to assess the risk associated with sulfide microparticles entering agricultural (top)soils. The data presented here clearly demonstrate a significant effect of 500 μM citric acid, a model rhizospheric solution, on ZnS alteration followed by enhanced Tl and Zn release. The relative ZnS mass loss after 28 days of citrate incubation reached 0.05 and 0.03 wt.% in Cambisol and Leptosol samples respectively, and was up to 4 times higher, compared to H2O treatments. Incongruent (i.e., substantially increased) mobilization of Tl from ZnS was observed during the incubation time. Generally higher (long-term) stability of ZnS with lower Tl release is predicted for soils enriched in carbonates. Furthermore, the important role of silicates (mainly illite) in the stabilization of mobilized Tl, linked with structural (inter)layer Tl-K exchange, is suggested. Thallium was highly bioavailable, as indicated by its uptake by white mustard; maximum Tl amounts were detected in biomass grown on the acidic Cambisol. Despite the fact that sulfides are thought as relatively stable phases in soil environments, enhanced sulfide dissolution and Tl/trace element release (and bioaccumulation) can be assumed in rhizosphere systems.
Environmental Science & Technology | 2016
Aleš Vaněk; Zuzana Grösslová; Martin Mihaljevič; Jakub Trubač; Vojtěch Ettler; Leslaw Teper; Jerzy Cabala; Jan Rohovec; Tereza Zádorová; Vít Penížek; Lenka Pavlů; Ondřej Holubík; Karel Němeček; Jakub Houška; Ondřej Drábek; Christopher Ash
Here, for the first time, we report the thallium (Tl) isotope record in moderately contaminated soils with contrasting land management (forest and meadow soils), which have been affected by emissions from coal-fired power plants. Our findings clearly demonstrate that Tl of anthropogenic (high-temperature) origin with light isotope composition was deposited onto the studied soils, where heavier Tl (ε(205)Tl ∼ -1) naturally occurs. The results show a positive linear relationship (R(2) = 0.71) between 1/Tl and the isotope record, as determined for all the soils and bedrocks, also indicative of binary Tl mixing between two dominant reservoirs. We also identified significant Tl isotope variations within the products from coal combustion and thermo-desorption experiments with local Tl-rich coal pyrite. Bottom ash exhibited the heaviest Tl isotope composition (ε(205)Tl ∼ 0), followed by fly ash (ε(205)Tl between -2.5 and -2.8) and volatile Tl fractions (ε(205)Tl between -6.2 and -10.3), suggesting partial Tl isotope fractionations. Despite the evident role of soil processes in the isotope redistributions, we demonstrate that Tl contamination can be traced in soils and propose that the isotope data represent a possible tool to aid our understanding of postdepositional Tl dynamics in surface environments for the future.
Journal of Inorganic Biochemistry | 2009
Šárka Dlouhá; Luboš Borůvka; Lenka Pavlů; Václav Tejnecký; Ondřej Drábek
The aim of this paper is to describe the influence of spruce (Picea abies) afforestation on soil chemical properties, especially on soil acidity and aluminium (Al) mobilization and speciation in soil. For our study we used a unique set of three adjacent plots, including a meadow and two spruce forest stands of different age, in otherwise comparable conditions. The plots were located in the region of Giant Mountains, north-eastern Czech Republic. In general, pH values decreased and Al concentrations increased significantly after afforestation. Speciation of KCl-extractable and water-soluble Al in soil samples was done by means of HPLC/IC method. The concentrations of Al(X)(1+) and Al(Y)(2+) forms (in both extracts) are higher in humic and organically enriched (Bhs) horizons. The highest concentration of Al(3+) in both extracts is in the B horizons of old forest. Generally, in all studied stands majority of Al in aqueous extract is in the Al(X)(1+) form, which indicates that a large amount of mobile Al is bound in organic complexes. It suggests that actual toxicity is rather low. On the other hand, we have proved that majority of KCl-extractable Al exists in Al(3+) form. Thus we can conclude that disturbance of existing equilibrium may cause massive release of highly toxic Al(3+) from soil sorption complex to the soil solution, and consequently it can endanger the whole ecosystem. Moreover, continuous soil acidification accelerated by anthropogenic factors leading to Al mobilization represents a chemical time bomb.
Journal of Inorganic Biochemistry | 2009
Luboš Borůvka; Antonín Nikodem; Ondřej Drábek; Petra Vokurková; Václav Tejnecký; Lenka Pavlů
Anthropogenic soil acidification in mountain forests and consequent Al release still present a significant problem in many regions. The effect of deposition may differ according to stand conditions, including altitude. This contribution is focused on three elevation transects, two in the Jizera Mountains strongly influenced by acid deposition, one in the less affected Novohradske Mountains. Quantification of pools of different Al forms and related soil characteristics (organic carbon, exchangeable hydrogen cations, sorption characteristics, etc.) is evaluated. In the Novohradske Mountains, the pool of both organically bound and water-soluble Al increases with increasing altitudes. In the Jizera Mountains, the distribution is more complicated; it is strongly affected by different forest type (beech vs. spruce), deforestation, and other local differences. Higher amounts of Al are bound in the mineral horizons compared to the surface organic horizons, even in the case of organically bound Al pools. Further differences between different altitudes and between soil horizons in Al distribution were revealed by detailed Al speciation using HPLC/IC method.
Biologia | 2007
Radka Kodešová; Lenka Pavlů; Vit Kodes; Anna Žigová; Antonín Nikodem
Two organic matter horizons developed under a spruce forest and grass vegetation were chosen to demonstrate the impact of a different vegetation cover on the micromorphology, porous system and hydraulic properties of surface soils. Micromorphological studies showed that the decomposed organic material in the organic matter horizon under the grass vegetation was more compact compared to the decomposed organic material in the organic matter horizon under the spruce forest. The detected soil porous system in the organic matter horizon under the spruce forest consisted of two clusters of pores with different diameters that were highly connected within and between both clusters. The soil porous system in the organic matter horizon under the grass vegetation consisted of one cluster of pores with the larger diameters and isolated pores with the smaller diameter. The retention ability of the organic matter horizon under the grass vegetation was higher than the retention ability of the organic matter horizon under the spruce forest.
Journal of Hazardous Materials | 2018
Aleš Vaněk; Zuzana Grösslová; Martin Mihaljevič; Vojtěch Ettler; Jakub Trubač; Vladislav Chrastný; Vít Penížek; Leslaw Teper; Jerzy Cabala; Andreas Voegelin; Tereza Zádorová; Vendula Oborná; Ondřej Drábek; Ondřej Holubík; Jakub Houška; Lenka Pavlů; Christopher Ash
Thallium (Tl) concentration and isotope data have been recorded for contaminated soils and a set of industrial wastes that were produced within different stages of Zn ore mining and metallurgical processing of Zn-rich materials. Despite large differences in Tl levels of the waste materials (1-500mgkg-1), generally small changes in ε205Tl values have been observed. However, isotopically lighter Tl was recorded in fly ash (ε205Tl∼-4.1) than in slag (ε205Tl∼-3.3), implying partial isotope fractionation during material processing. Thallium isotope compositions in the studied soils reflected the Tl contamination (ε205Tl∼-3.8), despite the fact that the major pollution period ended more than 30 years ago. Therefore, we assume that former industrial Tl inputs into soils, if significant, can potentially be traced using the isotope tracing method. We also suggest that the isotope redistributions occurred in some soil (subsurface) horizons, with Tl being isotopically heavier than the pollution source, due to specific sorption and/or precipitation processes, which complicates the discrimination of primary Tl. Thallium isotope analysis proved to be a promising tool to aid our understanding of Tl behavior within the smelting process, as well as its post-depositional dynamics in the environmental systems (soils).
Soil and Water Research | 2016
Radim Vašát; Lenka Pavlů; Luboš Borůvka; Václav Tejnecký; Antonín Nikodem
Vasat R., Pavlů L., Borůvka L., Tejnecký V., Nikodem A. (2015): Modelling the impact of acid deposition on forest soils in North Bohemian Mountains with two dynamic models: the Very Simple Dynamic Model (VSD) and the Model of Acidification of Groundwater in Catchments (MAGIC). Soil & Water Res., 10: 10–18. Enormous acid deposition that culminated in the 1970s contributed largely to accelerate the process of acidifica tion of soils in northern Bohemia. As a consequence a wide forest decline occurred shortly afterwards. In this paper we present a long-term soil acidification modelling with two dynamic models (Model of Acidification of Groundwater in Catchments and Very Simple Dynamic Model) to describe history, make successive prediction, and assess possibility of recovery of the ecosystem. Focused on eight soil acidification indicators we found a strong rise of the soil acidification status in 1970s, when emission load culminated, and a large decrease after the year 2000 (after flue gas desulfurization). We further revealed slight differences, but general similarity, for both dynamic models. The results indicate that the impact of historic massive pollution will not probably be eliminated in the future by the year 2100.
Soil and Water Research | 2016
Lenka Pavlů; Ondřej Drábek; Luboš Borůvka; Antonín Nikodem; Karel Němeček
Forest soils near industrial zones can be endangered by acid deposition and by dust deposition containing potentially toxic elements (PTEs). Soils of the study area are acidified and the surface enrichment with Cd, Cu, Pb, and Zn reflects anthropogenic contamination. Two forms of all PTEs were evaluated: potentially mobilized (2M nitric acid extraction) and mobile (0.01M CaCl 2 extraction) -the most toxic form. Negligible amounts of Cu and Pb were found in the mobile form. Pb mobilization is decreased by co-emitted bases and Cu mobilization is mainly controlled by soil reaction. These elements represent just a potential risk for the ecosystem. The mobile forms of Cd, Zn, and Mn account for approximately 30% of potentially mobilized forms in organic horizons. These elements could pose a problem to ecosystem vitality. Cd is toxic at small concentration and its content in mobilized form approaches the critical load. Cd can be considered the most dangerous element in the study area. Zn concentration is not reaching the limit value. Mobilization of Zn and Pb is mainly controlled by Ca and Mg content. The highest concentrations of Mn were found in the mineral horizons. It predicates a geogenic origin. The lowest percentage of the mobile form is in mineral horizon and its mobilization is controlled mainly by pH. Based on these results, a direct damage of forest by PTE contamination in the Silesian Beskids can be excluded. Lower contamination level along with acid condition and P deficiency could act as a permanent stress factor. Stressed forest is more predisposed e.g. to frost or insect damage.
Agriculture, Ecosystems & Environment | 2006
V. Pavlů; Michal Hejcman; Lenka Pavlů; Jan Gaisler; P. Nežerková