Lenka Tůmová
Charles University in Prague
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lenka Tůmová.
Molecules | 2007
Martin Doležal; Lenka Tůmová; Diana Kešetovičová; Jiří Tůma; Katarína Kráľová
The condensation of substituted pyrazine-2-carboxylic acid chlorides with ring-substituted anilines yielded five substituted pyrazine-2-carboxylic acid amides. Thesynthesis, and analytical, lipophilicity and biological data of the newly synthesizedcompounds are presented in this paper. The photosynthesis inhibition, antialgal activityand the effect of a series of pyrazine derivatives as abiotic elicitors on the accumulation offlavonoids in a callus culture of Ononis arvensis (L.) were investigated. The most activeinhibitor of the oxygen evolution rate in spinach chloroplasts was 6-chloro-pyrazine-2-carboxylic acid (3-iodo-4-methylphenyl)-amide (2, IC(50) = 51.0 micromol.L(-1)). The highestreduction of chlorophyll content in Chlorella vulgaris was found for 5-tert-butyl-N-(4-chloro-3-methylphenyl)-pyrazine-2-carboxamide (3, IC(50) = 44.0 micromol.L(-1)). The maximalflavonoid production (about 900%) was reached after a twelve-hour elicitation processwith 6-chloropyrazine-2-carboxylic acid (3-iodo-4-methylphenyl)-amide (2).
Molecules | 2010
Lenka Tůmová; Jiří Tůma; Klara Megušar; Martin Doležal
Substituted pyrazinecarboxamides markedly influenced production of flavonolignans in Silybum marianum callus and suspension cultures. In this study the effect of two compounds, N-(3-iodo-4-methylphenyl)pyrazine-2-carboxamide (1) and N-(3-iodo-4-methylphenyl)-5-tert-butyl-pyrazine-2-carboxamide (2), as abiotic elicitors on flavono-lignan production in callus culture of S. marianum was investigated. Silymarin complex compounds have hepatoprotective, anticancer and also hypocholesterolemic activity. In vitro flavonolignan concentration in cells is very low and the elicitation is one of the methods to increase production. Elicitors were tested at three concentrations and at different culture times. In the case of elicitation with 1, the greatest increase of flavonolignan and taxifoline production was observed at concentration c1a after 6-hours of elicitation and after 24 and 72-hours at concentration c1b. However, increased production of silychristin, one of the compounds in the silymarin complex, was achieved after only 6-hours elicitation with c1a (2.95 × 10-4 mol/L). The content of silychristin was 2-times higher compared to the control sample. An increased production of silychristin was reached with compound 2 at the concentration c2 (2.53 × 10-3 mol/L) after 72 h of elicitation. The production of silychristin in this case was increased 12-times compared to control.
Steroids | 2014
Olga Rothová; D. Holá; Marie Kočová; Lenka Tůmová; František Hnilička; H. Hniličková; Marek Kamlar; Tomas Macek
The aim of the work was to examine the effect of brassinosteroid (24-epibrassinolide; 24E) and ecdysteroid (20-hydroxyecdysone; 20E) on various parts of primary photosynthetic processes in maize and spinach. Additionally, the effect of steroids on gaseous exchange, pigment content and biomass accumulation was studied. The efficiency of the photosynthetic whole electron-transport chain responded negatively to the 24E or 20E treatment in both species, but there were interspecific differences regarding Photosystem (PS) II response. A positive effect on its oxygen-evolving complex and a slightly better energetical connectivity between PSII units were observed in maize whereas the opposite was true for spinach. The size of the pool of the PSI end electron acceptors was usually diminished due to 24E or 20E treatment. The treatment of plants with 24E or 20E applied individually positively influenced the content of photosynthetic pigments in maize (not in spinach). On the other hand, it did not affect gaseous exchange in maize but resulted in its reduction in spinach. Plants treated with combination of both steroids mostly did not significantly differ from the control plants. We have demonstrated for the first time that 20E applied in low (10nM) concentration can affect various parts of photosynthetic processes similarly to 24E and that brassinosteroids regulate not only PSII but also other parts of the photosynthetic electron transport chain - but not necessarily in the same way.
PLOS ONE | 2017
D. Holá; Monika Benešová; Lukáš Fischer; D. Haisel; František Hnilička; H. Hniličková; Petr L. Jedelský; Marie Kočová; Dagmar Procházková; Olga Rothová; Lenka Tůmová; Naďa Wilhelmová; R. Aroca
A comparative analysis of various parameters that characterize plant morphology, growth, water status, photosynthesis, cell damage, and antioxidative and osmoprotective systems together with an iTRAQ analysis of the leaf proteome was performed in two inbred lines of maize (Zea mays L.) differing in drought susceptibility and their reciprocal F1 hybrids. The aim of this study was to dissect the parent-hybrid relationships to better understand the mechanisms of the heterotic effect and its potential association with the stress response. The results clearly showed that the four examined genotypes have completely different strategies for coping with limited water availability and that the inherent properties of the F1 hybrids, i.e. positive heterosis in morphological parameters (or, more generally, a larger plant body) becomes a distinct disadvantage when the water supply is limited. However, although a greater loss of photosynthetic efficiency was an inherent disadvantage, the precise causes and consequences of the original predisposition towards faster growth and biomass accumulation differed even between reciprocal hybrids. Both maternal and paternal parents could be imitated by their progeny in some aspects of the drought response (e.g., the absence of general protein down-regulation, changes in the levels of some carbon fixation or other photosynthetic proteins). Nevertheless, other features (e.g., dehydrin or light-harvesting protein contents, reduced chloroplast proteosynthesis) were quite unique to a particular hybrid. Our study also confirmed that the strategy for leaving stomata open even when the water supply is limited (coupled to a smaller body size and some other physiological properties), observed in one of our inbred lines, is associated with drought-resistance not only during mild drought (as we showed previously) but also during more severe drought conditions.
PLOS ONE | 2018
Lenka Tůmová; Danuše Tarkowská; Kateřina Řehořová; Hana Marková; Marie Kočová; Olga Rothová; Petr Čečetka; D. Holá
The contents of endogenous brassinosteroids (BRs) together with various aspects of plant morphology, water management, photosynthesis and protection against cell damage were assessed in two maize genotypes that differed in their drought sensitivity. The presence of 28-norbrassinolide in rather high quantities (1–2 pg mg-1 fresh mass) in the leaves of monocot plants is reported for the first time. The intraspecific variability in the presence/content of the individual BRs in drought-stressed plants is also described for the first time. The drought-resistant genotype was characterised by a significantly higher content of total endogenous BRs (particularly typhasterol and 28-norbrassinolide) compared with the drought-sensitive genotype. On the other hand, the drought-sensitive genotype showed higher levels of 28-norcastasterone. Both genotypes also differed in the drought-induced reduction/elevation of the levels of 28-norbrassinolide, 28-norcastasterone, 28-homocastasterone and 28-homodolichosterone. The differences observed between both genotypes in the endogenous BR content are probably correlated with their different degrees of drought sensitivity, which was demonstrated at various levels of plant morphology, physiology and biochemistry.
Molecules | 2017
Ghada Bouz; Martin Juhás; Pavlína Niklová; Ondřej Janďourek; Pavla Paterová; Jiří Janoušek; Lenka Tůmová; Zuzana Kovalíková; Petr Kastner; Martin Doležal; Jan Zitko
Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) has become a frequently deadly infection due to increasing antimicrobial resistance. This serious issue has driven efforts worldwide to discover new drugs effective against Mtb. One research area is the synthesis and evaluation of pyrazinamide derivatives as potential anti-TB drugs. In this paper we report the synthesis and biological evaluations of a series of ureidopyrazines. Compounds were synthesized by reacting alkyl/aryl isocyanates with aminopyrazine or with propyl 5-aminopyrazine-2-carboxylate. Reactions were performed in pressurized vials using a CEM Discover microwave reactor with a focused field. Purity and chemical structures of products were assessed, and the final compounds were tested in vitro for their antimycobacterial, antibacterial, and antifungal activities. Propyl 5-(3-phenylureido)pyrazine-2-carboxylate (compound 4, MICMtb = 1.56 μg/mL, 5.19 μM) and propyl 5-(3-(4-methoxyphenyl)ureido)pyrazine-2-carboxylate (compound 6, MICMtb = 6.25 μg/mL, 18.91 μM) had high antimycobacterial activity against Mtb H37Rv with no in vitro cytotoxicity on HepG2 cell line. Therefore 4 and 6 are suitable for further structural modifications that might improve their biological activity and physicochemical properties. Based on the structural similarity to 1-(2-chloropyridin-4-yl)-3-phenylurea, a known plant growth regulator, two selected compounds were evaluated for similar activity as abiotic elicitors.
Pharmacognosy Magazine | 2016
Lenka Tůmová; Jiří Tůma; Martin Doležal; Zuzana Dučaiová; Jan Kubeš
Background: Silymarin, an active polyphenolic fraction of Silybum marianum, and high flavonoid content of Fagopyrum possess various interesting biological activities. The substituted pyrazine-2-carboxamides were previously used as effective elicitors of studied secondary metabolites. Objective: To study the effect of new synthetic pyrazine carboxamide derivatives, N-(4-chlorobenzyl)-5-tert-butylpyrazine-2-carboxamide (1) and 3-(3-((trifluoromethyl) benzyl) amino) pyrazine-2-carboxamide (2), on flavonolignan and flavonoid production in S. marianum and Fagopyrumes culentum in vitro cultures. Materials and Methods: Callus and suspension cultures were cultured on MS medium containing α-naphtaleneacetic acid or 2,4-D. Three elicitor concentrations for different exposure times were tested. Dried and powdered samples of callus and suspension cultures were extracted with methanol and analyzed by DAD-HPLC. Results: Compound 1 showed as a good elicitor of taxifolin production. The effect on silymarin complex was less visible with a maximum between 24 and 48 h after 3.292 ×10−4 mol/L concentration. The detailed analysis showed that silychristin was the most abundant. Compound 2 was effective in rutin production only in callus culture with maximum 24 h and 168 h after application of 3.3756 ×10−3 mol/L concentration and 48 and 72 h after 3.3756 ×10−4 mol/L concentration. Conclusion: From the results of the performed experiments, it can be concluded that compound 1 shows to be suitable elicitor for enhanced production of taxifolin and silychristin in S. marianum, mainly when 3.292 ×10−4 mol/L concentration was used, and compound 2 is suitable for increase rutin production in callus cultures and less appropriate for suspension cultures of F. esculentum.
Cereal Research Communications | 2007
Jiří Tůma; Milan Skalický; Lenka Tůmová; Josef Beránek
In a pot experiment using Avena sativa L. the effect of increasing doses of nitrogen and the application of chlormequat (CCC) on the translocation of Ca, Mg and K was investigated. Changes in the content of these elements were monitored in the panicles, stems, upper green leaves and lower yellowing leaves. The application of CCC significantly manifested in increased content of Ca and Mg only in the lower yellowing leaves. This increase was not observed for K. Increasing the nitrogen doses led to an insignificant increase in the content of Ca and Mg in the leaves and K in the stems.
Food Chemistry | 2010
José Cheel; Pierre Van Antwerpen; Lenka Tůmová; Gabriela Onofre; Doris Vokurková; Karim Zouaoui-Boudjeltia; Michel Vanhaeverbeek; Jean Neve
Acta Physiologiae Plantarum | 2013
José Cheel; Lenka Tůmová; Carlos Areche; Pierre Van Antwerpen; Jean Neve; Karim Zouaoui-Boudjeltia; Aurelio San Martin; Ivan Vokřál; Vladimír Wsól; Jarmila Neugebauerová