Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lennart Bunch is active.

Publication


Featured researches published by Lennart Bunch.


Journal of Medicinal Chemistry | 2010

Structure-activity relationship study of first selective inhibitor of excitatory amino acid transporter subtype 1: 2-Amino-4-(4-methoxyphenyl)-7-(naphthalen-1-yl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile (UCPH-101).

Mette N. Erichsen; Tri H. V. Huynh; Bjarke Abrahamsen; Jesper F. Bastlund; Christoffer Bundgaard; Olja Monrad; Anders Bekker-Jensen; Christina W. Nielsen; Karla Frydenvang; Anders A. Jensen; Lennart Bunch

The excitatory amino acid transporters (EAATs) are expressed throughout the central nervous system, where they are responsible for the reuptake of the excitatory neurotransmitter (S)-glutamate (Glu). (1) Recently, we have reported the discovery of the first subtype selective EAAT1 inhibitor 2-amino-4-(4-methoxyphenyl)-7-(naphthalen-1-yl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile (UCPH-101) (1b) and presented an introductory structure-activity relationship (SAR) study. (2) Here, we present a detailed SAR by the design, synthesis, and pharmacological evaluation of analogues 1g-1t. By comparison of potencies of 1b, 1h, and 1i versus 1j, it is evident that potency is largely influenced by the chemical nature of the R(1) substituent. The study also demonstrates that any chemical change of the functional groups or a change to the parental scaffold results in the complete loss of inhibitory activity of the compounds at EAAT1. Finally, a bioavailability study of UCPH-101 determined the half-life to be 30 min in serum (rats) but also that it was not able to penetrate the blood-brain barrier to any significant degree.


Expert Opinion on Therapeutic Targets | 2009

Excitatory amino acid transporters as potential drug targets

Lennart Bunch; Mette N. Erichsen; Anders A. Jensen

Background: Excitatory amino acid transporters (EAATs) are transmembrane proteins responsible for the uptake of (S)-glutamate (Glu) from the synaptic cleft, thereby terminating the glutamatergic neurotransmitter signal. Today five subtypes have been identified. Except for EAAT2, their individual roles or functions in the CNS are yet to be fully understood due to the shortage of subtype-selective ligands. Objective/methods: We examine the latest developments in this field by addressing EAAT expression pattern, localization and pharmacology. We present highlights of published work on inhibitors as well as enhancers which display subtype preference or selectivity and discuss which pathological conditions in the CNS such ligands may be beneficial to. Results/conclusions: Not until subtype-selective enhancers, inhibitors and substrates for all five EAAT subtypes have been discovered can a full and detailed understanding of EAATs be obtained. Thus we encourage collaboration between organic chemists and molecular pharmacologists, who, together, may pave the way for new EAAT ligands of importance.


Journal of Medicinal Chemistry | 2009

Discovery of the First Selective Inhibitor of Excitatory Amino Acid Transporter Subtype 1

Anders A. Jensen; Mette N. Erichsen; Christina W. Nielsen; Tine B. Stensbøl; Jan Kehler; Lennart Bunch

The discovery of the first class of subtype-selective inhibitors of the human excitatory amino acid transporter subtype 1 (EAAT1) and its rat orthologue GLAST is reported. An opening structure-activity relationship of 25 analogues is presented that addresses the influence of substitutions at the 4- and 7-positions of the parental skeleton 2-amino-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile. The most potent analogue 1o displays high nanomolar inhibitory activity at EAAT1 and a >400-fold selectivity over EAAT2 and EAAT3, making it a highly valuable pharmacological tool.


Current Opinion in Pharmacology | 2015

Excitatory amino acid transporters: recent insights into molecular mechanisms, novel modes of modulation and new therapeutic possibilities.

Anders A. Jensen; Christoph Fahlke; Walden E. Bjørn-Yoshimoto; Lennart Bunch

The five excitatory amino acid transporters (EAAT1-5) mediating the synaptic uptake of the major excitatory neurotransmitter glutamate are differently expressed throughout the CNS and at the synaptic level. Although EAATs are crucial for normal excitatory neurotransmission, explorations into the physiological functions mediated by the different transporter subtypes and their respective therapeutic potential have so far been sparse, in no small part due to the limited selection of pharmacological tools available. In the present update, we outline important new insights into the molecular compositions of EAATs and their intricate transport process, the novel approaches to pharmacological modulation of the transporters that have emerged, and interesting new perspectives in EAAT as drug targets proposed in recent years.


Medicinal Research Reviews | 2009

Subtype selective kainic acid receptor agonists: discovery and approaches to rational design.

Lennart Bunch; Povl Krogsgaard-Larsen

(S)‐Glutamic acid (Glu) is the major excitatory neurotransmitter in the mammalian central nervous system, activating the plethora of glutamate receptors (GluRs). In broad lines, the GluRs are divided into two major classes: the ionotropic Glu receptors (iGluRs) and the metabotropic Glu receptors (mGluRs). Within the iGluRs, five subtypes (KA1, KA2, iGluR5‐7) show high affinity and express full agonist activity upon binding of the naturally occurring amino acid kainic acid (KA). Thus these receptors have been named the KA receptors. This review describes all—to our knowledge—published KA receptor agonists. In total, over 100 compounds are described by means of chemical structure and available pharmacological data. With this perspective review, it is our intention to ignite and stimulate inspiration for future design and synthesis of novel subtype selective KA receptor agonists.


European Journal of Medicinal Chemistry | 2015

Benzoxazoles and oxazolopyridines in medicinal chemistry studies.

Charles S. Demmer; Lennart Bunch

The benzoxazole heterocycle is often found in ligands targeting a plethora of receptors and enzymes. By analysis of published X-ray structures, this review aims at highlighting key interactions which the benzoxazole may engage in with its host protein. Furthermore, bioavailability, metabolism and the use of benzoxazole as a bioisostere are discussed. The review is extended to cover structure-activity relationship studies of 2-substituted benzoxazoles, 2-substituted oxazolopyridines, and in perspective, application of the recently published novel heterocycle oxazolopyrazine in medicinal chemistry studies.


Journal of Medicinal Chemistry | 2008

Chemo-enzymatic synthesis of a series of 2,4-syn-functionalized (S)-glutamate analogues: new insight into the structure-activity relation of ionotropic glutamate receptor subtypes 5, 6, and 7.

Emanuelle Sagot; Darryl S. Pickering; Xiaosui Pu; Michelle Umberti; Tine B. Stensbøl; Birgitte Nielsen; Marion Chapelet; Jean Bolte; Thierry Gefflaut; Lennart Bunch

( S)-Glutamic acid (Glu) is the major excitatory neurotransmitter in the central nervous system (CNS) activating the plethora of ionotropic Glu receptors (iGluRs) and metabotropic Glu receptors (mGluRs). In this paper, we present a chemo-enzymatic strategy for the enantioselective synthesis of five new Glu analogues 2a- f ( 2d is exempt) holding a functionalized substituent in the 4-position. Nine Glu analogues 2a- j are characterized pharmacologically at native 2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA), kainic acid (KA), and N-methyl- d-aspartic acid (NMDA) receptors in rat synaptosomes as well as in binding assays at cloned rat iGluR5-7 subtypes. A detailed in silico study address as to why 2h is a high-affinity ligand at iGluR5-7 ( K i = 3.81, 123, 57.3 nM, respectively), while 2e is only a high affinity ligand at iGluR5 ( K i = 42.8 nM). Furthermore, a small series of commercially available iGluR ligands are characterized in iGluR5-7 binding.


The Journal of Neuroscience | 2013

Allosteric Modulation of an Excitatory Amino Acid Transporter: The Subtype-Selective Inhibitor UCPH-101 Exerts Sustained Inhibition of EAAT1 through an Intramonomeric Site in the Trimerization Domain

Bjarke Abrahamsen; Nicole Schneider; Mette N. Erichsen; Tri H. V. Huynh; Christoph Fahlke; Lennart Bunch; Anders A. Jensen

In the present study, the mechanism of action and molecular basis for the activity of the first class of selective inhibitors of the human excitatory amino acid transporter subtype 1 (EAAT1) and its rodent ortholog GLAST are elucidated. The previously reported specificity of UCPH-101 and UCPH-102 for EAAT1 over EAAT2 and EAAT3 is demonstrated to extend to the EAAT4 and EAAT5 subtypes as well. Interestingly, brief exposure to UCPH-101 induces a long-lasting inactive state of EAAT1, whereas the inhibition exerted by closely related analogs is substantially more reversible in nature. In agreement with this, the kinetic properties of UCPH-101 unblocking of the transporter are considerably slower than those of UCPH-102. UCPH-101 exhibits noncompetitive inhibition of EAAT1, and its binding site in GLAST has been delineated in an elaborate mutagenesis study. Substitutions of several residues in TM3, TM4c, and TM7a of GLAST have detrimental effects on the inhibitory potency and/or efficacy of UCPH-101 while not affecting the pharmacological properties of (S)-glutamate or the competitive EAAT inhibitor TBOA significantly. Hence, UCPH-101 is proposed to target a predominantly hydrophobic crevice in the “trimerization domain” of the GLAST monomer, and the inhibitor is demonstrated to inhibit the uptake through the monomer that it binds to exclusively and not to affect substrate translocation through the other monomers in the GLAST trimer. The allosteric mode of UCPH-101 inhibition underlines the functional importance of the trimerization domain of the EAAT and demonstrates the feasibility of modulating transporter function through ligand binding to regions distant from its “transport domain.”


Journal of Medicinal Chemistry | 2013

Chemoenzymatic Synthesis of New 2,4-syn-Functionalized (S)-Glutamate Analogues and Structure–Activity Relationship Studies at Ionotropic Glutamate Receptors and Excitatory Amino Acid Transporters

Zeinab Assaf; Anja Probst Larsen; Raminta Venskutonytė; Liwei Han; Bjarke Abrahamsen; Birgitte Nielsen; Michael Gajhede; Jette S. Kastrup; Anders A. Jensen; Darryl S. Pickering; Karla Frydenvang; Thierry Gefflaut; Lennart Bunch

In the mammalian central nervous system, (S)-glutamate (Glu) is released from the presynaptic neuron where it activates a plethora of pre- and postsynaptic Glu receptors. The fast acting ionotropic Glu receptors (iGluRs) are ligand gated ion channels and are believed to be involved in a vast number of neurological functions such as memory and learning, synaptic plasticity, and motor function. The synthesis of 14 enantiopure 2,4-syn-Glu analogues 2b-p is accessed by a short and efficient chemoenzymatic approach starting from readily available cyclohexanone 3. Pharmacological characterization at the iGluRs and EAAT1-3 subtypes revealed analogue 2i as a selective GluK1 ligand with low nanomolar affinity. Two X-ray crystal structures of the key analogue 2i in the ligand-binding domain (LBD) of GluA2 and GluK3 were determined. Partial domain closure was seen in the GluA2-LBD complex with 2i comparable to that induced by kainate. In contrast, full domain closure was observed in the GluK3-LBD complex with 2i, similar to that of GluK3-LBD with glutamate bound.


Bioorganic & Medicinal Chemistry | 2012

Design, synthesis and pharmacological characterization of coumarin-based fluorescent analogs of excitatory amino acid transporter subtype 1 selective inhibitors, UCPH-101 and UCPH-102.

Tri H. V. Huynh; Bjarke Abrahamsen; Karsten K. Madsen; Alba Gonzalez-Franquesa; Anders A. Jensen; Lennart Bunch

The excitatory amino acid transporters (EAATs) play a pivotal role in regulating the synaptic concentration of glutamate in the mammalian central nervous system. To date, five different subtypes have been identified, named EAAT15 in humans (and GLAST, GLT-1, EAAC1, EAAT4, and EAAT5, respectively, in rodents). Recently, we have published and presented a structure-activity relationship (SAR) study of a novel class of selective inhibitors of EAAT1 (and GLAST), with the analogs UCPH-101 (IC(50)=0.66μM) and UCPH-102 (IC(50)=0.43μM) being the most potent inhibitors in the series. In this paper, we present the design, synthesis and pharmacological evaluation of six coumarin-based fluorescent analogs of UCPH-101/102 as subtype-selective inhibitors at EAAT1. Analogs 1114 failed to inhibit EAAT1 function (IC(50) values >300μM), whereas analogs 15 and UCPH-102F inhibited EAAT1 with IC(50) values in the medium micromolar range (17μM and 14μM, respectively). Under physiological pH no fluorescence was observed for analog 15, while a bright blue fluorescence emission was observed for analog UCPH-102F. Regrettably, under confocal laser scanning microscopy selective visualization of expression of EAAT1 over EAAT3 was not possible due to nonspecific binding of UCPH-102F.

Collaboration


Dive into the Lennart Bunch's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge