Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lennell Allen is active.

Publication


Featured researches published by Lennell Allen.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Alveolar epithelial type I cells contain transport proteins and transport sodium, supporting an active role for type I cells in regulation of lung liquid homeostasis

Meshell D. Johnson; J. H. Widdicombe; Lennell Allen; Pascal Barbry; Leland G. Dobbs

Transport of lung liquid is essential for both normal pulmonary physiologic processes and for resolution of pathologic processes. The large internal surface area of the lung is lined by alveolar epithelial type I (TI) and type II (TII) cells; TI cells line >95% of this surface, TII cells <5%. Fluid transport is regulated by ion transport, with water movement following passively. Current concepts are that TII cells are the main sites of ion transport in the lung. TI cells have been thought to provide only passive barrier, rather than active, functions. Because TI cells line most of the internal surface area of the lung, we hypothesized that TI cells could be important in the regulation of lung liquid homeostasis. We measured both Na+ and K+ (Rb+) transport in TI cells isolated from adult rat lungs and compared the results to those of concomitant experiments with isolated TII cells. TI cells take up Na+ in an amiloride-inhibitable fashion, suggesting the presence of Na+ channels; TI cell Na+ uptake, per microgram of protein, is ≈2.5 times that of TII cells. Rb+ uptake in TI cells was ≈3 times that in TII cells and was inhibited by 10−4 M ouabain, the latter observation suggesting that TI cells exhibit Na+-, K+-ATPase activity. By immunocytochemical methods, TI cells contain all three subunits (α, β, and γ) of the epithelial sodium channel ENaC and two subunits of Na+-, K+-ATPase. By Western blot analysis, TI cells contain ≈3 times the amount of αENaC/μg protein of TII cells. Taken together, these studies demonstrate that TI cells not only contain molecular machinery necessary for active ion transport, but also transport ions. These results modify some basic concepts about lung liquid transport, suggesting that TI cells may contribute significantly in maintaining alveolar fluid balance and in resolving airspace edema.


Pediatric Research | 1996

Localization and Developmental Expression of Surfactant Proteins D and A in the Respiratory Tract of the Mouse

Carlene J Wong; Jennifer A. Akiyama; Lennell Allen; Samuel Hawgood

Surfactant protein D (SP-D) is synthesized and secreted by pulmonary epithelial cells. Like surfactant protein A (SP-A), SP-D is a collagen-like glycoprotein belonging to the “collectin” class of C-type lectins that may play an important role in pulmonary host defense. To begin studies on SP-D gene regulation and function using the mouse as an animal model, we identified the cellular sites of SP-D gene expression in adult mouse lung and trachea and characterized the developmental expression of SP-D mRNA in murine fetal and newborn lungs. We compared these findings with similar studies for murine SP-A, which has an established role in surfactant function and metabolism and a probable role in pulmonary host defense. SP-D mRNA and protein were readily detected by in situ hybridization and immunocytochemistry in alveolar type II and nonciliated bronchiolar epithelial cells of the lung, as well as in cells of the tracheal epithelium and tracheal submucosal glands of the adult mouse. Although SP-A mRNA and protein were also localized to alveolar and nonciliated bronchiolar epithelial cells of the murine lung, there was no detectable labeling for either SP-A mRNA or protein in the murine trachea. Expression of murine SP-D mRNA was first detected by Northern blot analysis on d 16 of gestation in timed-pregnant mice, with an average gestational period of 17 d, and this increased dramatically before birth and during the immediate postnatal period. The developmental expression of murine SP-A mRNA paralleled that of SP-D except that there was a small decrease in mRNA content on postnatal d 5. These studies provide the first description of the cellular distribution and developmental expression of SP-D in mouse lung, which will be important for interpreting future studies of SP-D gene expression in transgenic animal models. In addition, these studies provide the first documentation that, unlike SP-A, SP-D is synthesized not only in the lung but also in submucosal glands of the trachea.


Journal of Histochemistry and Cytochemistry | 2002

Tissue distribution of surfactant proteins A and D in the mouse.

Jennifer A. Akiyama; Ari Hoffman; Cynthia Brown; Lennell Allen; Jess Edmondson; Francis R. Poulain; Samuel Hawgood

Surfactant proteins A and D, collagen-like lectins (collectins), were first isolated from the lung. In the lung, SP-A and SP-D have roles in surfactant homeostasis and innate immunity. In this study we show that SP-A and SP-D mRNA can be detected in a significant number of non-pulmonary tissues but the proteins have a more limited distribution. SP-D protein was detected in lung, uterus, ovary, and lacrimal gland, whereas SP-A protein was detected only in the lung. The results suggest that SP-D participates in mucosal immunity throughout the body.


Journal of Virology | 2004

Pulmonary Collectins Modulate Strain-Specific Influenza A Virus Infection and Host Responses

Samuel Hawgood; Cynthia Brown; Jess Edmondson; Amber Stumbaugh; Lennell Allen; Jon Goerke; Howard Clark; Francis R. Poulain

ABSTRACT Collectins are secreted collagen-like lectins that bind, agglutinate, and neutralize influenza A virus (IAV) in vitro. Surfactant proteins A and D (SP-A and SP-D) are collectins expressed in the airway and alveolar epithelium and could have a role in the regulation of IAV infection in vivo. Previous studies have shown that binding of SP-D to IAV is dependent on the glycosylation of specific sites on the HA1 domain of hemagglutinin on the surface of IAV, while the binding of SP-A to the HA1 domain is dependent on the glycosylation of the carbohydrate recognition domain of SP-A. Here, using SP-A and SP-D gene-targeted mice on a common C57BL6 background, we report that viral replication and the host response as measured by weight loss, neutrophil influx into the lung, and local cytokine release are regulated by SP-D but not SP-A when the IAV is glycosylated at a specific site (N165) on the HA1 domain. SP-D does not protect against IAV infection with a strain lacking glycosylation at N165. With the exception of a small difference on day 2 after infection with X-79, we did not find any significant difference in viral load in SP-A−/− mice with either IAV strain, although small differences in the cytokine responses to IAV were detected in SP-A−/− mice. Mice deficient in both SP-A and SP-D responded to IAV similarly to mice deficient in SP-D alone. Since most strains of IAV currently circulating are glycosylated at N165, SP-D may play a role in protection from IAV infection.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2009

Rat alveolar type I cells proliferate, express OCT-4, and exhibit phenotypic plasticity in vitro

Robert F. Gonzalez; Lennell Allen; Leland G. Dobbs

Alveolar type I (TI) cells are large, squamous cells that cover 95-99% of the internal surface area of the lung. Although TI cells are believed to be terminally differentiated, incapable of either proliferation or phenotypic plasticity, TI cells in vitro both proliferate and express phenotypic markers of other differentiated cell types. Rat TI cells isolated in purities of >99% proliferate in culture, with a sixfold increase in cell number before the cells reach confluence; >50% of the cultured TI cells are Ki67+. At cell densities of 1-2 cells/well, approximately 50% of the cells had the capacity to form colonies. Under the same conditions, type II cells do not proliferate. Cultured TI cells express RTI40 and aquaporin 5, phenotypic markers of the TI cell phenotype. By immunofluorescence, Western blotting, and Q-PCR, TI cells express OCT-4A (POU5F1), a transcription factor associated with maintenance of the pluripotent state in stem cells. Based on the expression patterns of various marker proteins, TI cells are distinct from either of two recently described putative pulmonary multipotent cell populations, the bronchoalveolar stem cell or the OCT-4+ stem/progenitor cell. Although TI cells in adult rat lung tissue do not express either surfactant protein C (SP-C) or CC10, respective markers of the TII and Clara cell phenotypes, in culture TI cells can be induced to express both SP-C and CC10. Together, the findings that TI cells proliferate and exhibit phenotypic plasticity in vitro raise the possibility that TI cells may have similar properties in vivo.


Cellular Physiology and Biochemistry | 2010

The Great Big Alveolar TI Cell: Evolving Concepts and Paradigms

Leland G. Dobbs; Meshell D. Johnson; Jeff N. Vanderbilt; Lennell Allen; Robert F. Gonzalez

Pulmonary alveolar type I cells (TI cell) are very large (ñ5400 µm2 in surface area) squamous cells that cover more than 98% of the internal surface area of rodent lungs. In the past, TI cells were believed to serve only passive barrier functions, with no active functional properties in the lung. The fairly recent development of methods to isolate TI cells has permitted investigation of functions of this cell type for the first time. Resolvable by electron microscopy, TI cells contain microvilli and organelles typically associated with metabolic functions, such as mitochondria, abundant smooth and rough endoplasmic reticulum and Golgi apparatus. TI cells contain the molecular machinery necessary for ion transport and take up Na+, K+, and Cl-, from which one can infer that it is likely that they play a role in ion and fluid transport in vivo. Because the abundance/µm2 of highly selective Na+ channels (HSC channels, consisting of all three ENaC subunits) is the same in TI and TII cells and because TI cells cover the majority of the lung internal surface, TI cells may play the major role in bulk transport of Na+. In vitro, TI cells can proliferate and exhibit phenotypic plasticity, raising the question of whether this cell type may play a role in development and lung repair after injury. From gene expression analysis of TI cells, one can infer a variety of other possible functions for TI cells. The development of techniques to administer transgenes specifically to TI cells will permit direct study of this cell type in vivo.


American Journal of Respiratory Cell and Molecular Biology | 2014

Claudin-18 deficiency results in alveolar barrier dysfunction and impaired alveologenesis in mice.

Michael J. LaFemina; Katherine M. Sutherland; Trevor Bentley; Linda W. Gonzales; Lennell Allen; Cheryl J. Chapin; Deepti Rokkam; Kelly Sweerus; Leland G. Dobbs; Philip L. Ballard; James A. Frank

Claudins are a family of transmembrane proteins that are required for tight junction formation. Claudin (CLDN)-18.1, the only known lung-specific tight junction protein, is the most abundant claudin in alveolar epithelial type (AT) 1 cells, and is regulated by lung maturational agonists and inflammatory mediators. To determine the function of CLDN18 in the alveolar epithelium, CLDN18 knockout (KO) mice were generated and studied by histological, biochemical, and physiological approaches, in addition to whole-genome microarray. Alveolar epithelial barrier function was assessed after knockdown of CLDN18 in isolated lung cells. CLDN18 levels were measured by quantitative PCR in lung samples from fetal and postnatal human infants. We found that CLDN18 deficiency impaired alveolar epithelial barrier function in vivo and in vitro, with evidence of increased paracellular permeability and architectural distortion at AT1-AT1 cell junctions. Although CLDN18 KO mice were born without evidence of a lung abnormality, histological and gene expression analysis at Postnatal Day 3 and Week 4 identified impaired alveolarization. CLDN18 KO mice also had evidence of postnatal lung injury, including acquired AT1 cell damage. Human fetal lungs at 23-24 weeks gestational age, the highest-risk period for developing bronchopulmonary dysplasia, a disease of impaired alveolarization, had significantly lower CLDN18 expression relative to postnatal lungs. Thus, CLDN18 deficiency results in epithelial barrier dysfunction, injury, and impaired alveolarization in mice. Low expression of CLDN18 in human fetal lungs supports further investigation into a role for this tight junction protein in bronchopulmonary dysplasia.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2010

Regulated gene expression in cultured type II cells of adult human lung

Philip L. Ballard; Jae W. Lee; Xiaohui Fang; Cheryl J. Chapin; Lennell Allen; Mark R. Segal; Horst Fischer; Beate Illek; Linda W. Gonzales; Venkatadri Kolla; Michael A. Matthay

Alveolar type II cells have multiple functions, including surfactant production and fluid clearance, which are critical for lung function. Differentiation of type II cells occurs in cultured fetal lung epithelial cells treated with dexamethasone plus cAMP and isobutylmethylxanthine (DCI) and involves increased expression of 388 genes. In this study, type II cells of human adult lung were isolated at approximately 95% purity, and gene expression was determined (Affymetrix) before and after culturing 5 days on collagen-coated dishes with or without DCI for the final 3 days. In freshly isolated cells, highly expressed genes included SFTPA/B/C, SCGB1A, IL8, CXCL2, and SFN in addition to ubiquitously expressed genes. Transcript abundance was correlated between fetal and adult cells (r = 0.88), with a subset of 187 genes primarily related to inflammation and immunity that were expressed >10-fold higher in adult cells. During control culture, expression increased for 8.1% of expressed genes and decreased for approximately 4% including 118 immune response and 10 surfactant-related genes. DCI treatment promoted lamellar body production and increased expression of approximately 3% of probed genes by > or =1.5-fold; 40% of these were also induced in fetal cells. Highly induced genes (> or =10-fold) included PGC, ZBTB16, DUOX1, PLUNC, CIT, and CRTAC1. Twenty-five induced genes, including six genes related to surfactant (SFTPA/B/C, PGC, CEBPD, and ADFP), also had decreased expression during control culture and thus are candidates for hormonal regulation in vivo. Our results further define the adult human type II cell molecular phenotype and demonstrate that a subset of genes remains hormone responsive in cultured adult cells.


Journal of Histochemistry and Cytochemistry | 1999

HTI56, an Integral Membrane Protein Specific to Human Alveolar Type I Cells

Leland G. Dobbs; Robert F. Gonzalez; Lennell Allen; Deborah K. Froh

The alveolar epithelium is composed of two morphologically distinct types of cells, Type I and Type II cells. The thin cytoplasmic extensions of Type I cells cover more than 95% of the internal surface area of the lungs. Type I cells provide the very short diffusion pathway essential for gas exchange. Because there were no biochemical markers specific for human Type I cells, we developed a strategy to produce a monoclonal antibody (MAb) specific for human Type I cells. Isolated human lung cells were used as immunogens; >5000 clones from seven fusions were screened to identify an MAb specific for a 56-kD protein of Type I cells, HTI56. By Western blotting, HTI56 is unique to the lung. By immunoelectron microscopy, it is localized to the Type I cell apical plasma membrane. The pI of HTI56 is 2.5-3.5. HTI56 is glycosylated and has the biochemical characteristics of an integral membrane protein. HTI56 is detectable by Week 20 of gestation and its expression increases in fetal lung explant culture. HTI56 should be useful as a marker for human Type I cells both morphologically and biochemically. It may also be useful in studies of disease and as a marker for lung injury.


American Journal of Physiology-lung Cellular and Molecular Physiology | 1997

Biochemical detection of type I cell damage after nitrogen dioxide-induced lung injury in rats

M. C. McElroy; Jean-Francois Pittet; Lennell Allen; Jeanine P. Wiener-Kronish; Leland G. Dobbs

We have previously shown that injury to lung epithelial type I cells can be detected biochemically by measuring the airway fluid content of a type I cell-specific protein, rTI40, in a model of severe acute lung injury [M. C. McElroy, J.-F. Pittet, S. Hashimoto, L. Allen, J. P. Wiener-Kronish, and L. G. Dobbs. Am. J. Physiol. 268 ( Lung Cell. Mol. Physiol. 12): L181-L186, 1995]. The first objective of the present study was to evaluate the utility of rTI40 in the assessment of alveolar injury in a model of milder acute lung injury. Rats were exposed to 18 parts/million NO2 for 12 h; control rats received filtered air for 12 h. In NO2-exposed rats, the total amount of rTI40 in bronchoalveolar fluid was elevated 2-fold compared with control values ( P < 0.001); protein concentration was 8.5-fold of control values ( P < 0.001). The increase in rTI40 was associated with morphological evidence of injury to type I cells limited to the proximal alveolar regions of the lung. The second objective was to correlate the severity of alveolar type I cell injury with functional measurements of lung epithelial barrier integrity. NO2 inhalation stimulated distal air space fluid clearance despite a significant increase in lung endothelial and epithelial permeability to protein. These data demonstrate that rTI40 is a useful biochemical marker for mild focal injury and that exposure to NO2 alters lung barrier function. Taken together with our earlier studies, these results suggest that the quantity of recoverable rTI40 can be used as an index of the severity of damage to the alveolar epithelium.We have previously shown that injury to lung epithelial type I cells can be detected biochemically by measuring the airway fluid content of a type I cell-specific protein, rTI40, in a model of severe acute lung injury [M. C. McElroy, J.-F. Pittet, S. Hashimoto, L. Allen, J. P. Wiener-Kronish, and L. G. Dobbs. Am. J. Physiol. 268 (Lung Cell. Mol. Physiol. 12): L181-L186, 1995]. The first objective of the present study was to evaluate the utility of rTI40 in the assessment of alveolar injury in a model of milder acute lung injury. Rats were exposed to 18 parts/ million NO2 for 12 h; control rats received filtered air for 12 h. In NO2-exposed rats, the total amount of rTI40 in bronchoalveolar fluid was elevated 2-fold compared with control values (P < 0.001); protein concentration was 8.5-fold of control values (P < 0.001). The increase in rTI40 was associated with morphological evidence of injury to type I cells limited to the proximal alveolar regions of the lung. The second objective was to correlate the severity of alveolar type I cell injury with functional measurements of lung epithelial barrier integrity. NO2 inhalation stimulated distal air space fluid clearance despite a significant increase in lung endothelial and epithelial permeability to protein. These data demonstrate that rTI40 is a useful biochemical marker for mild focal injury and that exposure to NO2 alters lung barrier function. Taken together with our earlier studies, these results suggest that the quantity of recoverable rTI40 can be used as an index of the severity of damage to the alveolar epithelium.

Collaboration


Dive into the Lennell Allen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Samuel Hawgood

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jennifer A. Akiyama

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jon Goerke

University of California

View shared research outputs
Top Co-Authors

Avatar

Cynthia Brown

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jess Edmondson

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge