Léo Girardi
INAF
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Léo Girardi.
Monthly Notices of the Royal Astronomical Society | 2012
Alessandro Bressan; Paola Marigo; Léo Girardi; Bernardo Salasnich; Claudia Dal Cero; Stefano Rubele; Ambra Nanni
We present the updated version of the code used to compute stellar evolutionary tracks in Padova. It is the result of a thorough revision of the major in put physics, together with the inclusion of the pre‐main sequence phase, not present in our previous releases of stellar models. Another innovative aspect is the possibility of prompt ly generating accurate opacity tables fully consistent with any selected initial chemical composition, by coupling the OPAL opacity data at high temperatures to the molecular opacities computed with our AESOPUS code (Marigo & Aringer 2009). In this work we present extended sets of stellar evolutionary models for various initial chemical compositions, while other set s with different metallicities and/or different distributions of heavy elements are being computed. For the present release of models we adopt the solar distribution of heavy elements from the recent revision by Caffau et al. (2011), corresponding to a Sun’s metallicity Z≃ 0.0152. From all computed sets of stellar tracks, we also derive isochrones in several photometric systems. The aim is to provide the community with the basic tools to model star clusters and galaxies by means of population synthesis techniques.
Astronomy and Astrophysics | 2008
Paola Marigo; Léo Girardi; A. Bressan; M. A. T. Groenewegen; L. Silva; Gian Luigi Granato
We present a large set of theoretical isochrones, whose distinctive features mostly reside on the greatly-improved treatment of the thermally-pulsing asymptotic giant branch (TP-AGB) phase. Essentially, we have coupled the TP-AGB tracks described in Paper I, at their stages of pre-flash quiescent H-shell burning, with the evolutionary tracks for the previous evolutionary phases from Girardi et al. (2000, AA the bell-shaped sequences in the Hertzsprung-Russell (HR) diagram for stars with hot-bottom burning; the changes of pulsation mode between fundamental and first overtone; the sudden changes of mean mass-loss rates as the surface chemistry changes from M- to C-type; etc. Theoretical isochrones are then converted to about 20 different photometric systems - including traditional ground-based systems, and those of recent major wide-field surveys such as SDSS, OGLE, DENIS, 2MASS, UKIDSS, etc., - by means of synthetic photometry applied to an updated library of stellar spectra, suitably extended to include C-type stars. Finally, we correct the predicted photometry for the effect of circumstellar dust during the mass-losing stages of the AGB evolution, which allows us to improve the results for the optical-to-infrared systems, and to simulate mid- and far-IR systems such as those of Spitzer and AKARI. We illustrate the most striking properties of these isochrones by means of basic comparisons with observational data for the Milky Way disc and the Magellanic Clouds. Access to the data is provided both via a web repository of static tables (http://stev.oapd.inaf.it/ dustyAGB07 and CDS), and via an interactive web interface (http://stev.oapd. inaf. it/cmd), which provides tables for any intermediate value of age and metallicity, for several photometric systems, and for different choices of dust properties.
Astronomy and Astrophysics | 2005
Léo Girardi; M. A. T. Groenewegen; E. Hatziminaoglou; L. N. da Costa
We describe TRILEGAL, a new populations synthesis code for simulating the stellar photometry of any Galaxy field. The code attempts to improve upon several technical aspects of star count models, by: dealing with very complete input libraries of evolutionary tracks; using a stellar spectral library to simulate the photometry in virtually any broad-band system; being very versatile allowing easy changes in the input libraries and in the description of all of its ingredients - like the star formation rate, age-metallicity relation, initial mass function, and geometry of Galaxy components. In a previous paper (Groenewegen et al. 2002, Paper I), the code was first applied to describe the very deep star counts of the CDFS stellar catalogue. Here, we briefly describe its initial calibration using EIS-deep and DMS star counts, which, as we show, are adequate samples to probe both the halo and the disc components of largest scale heights (oldest ages). We then present the changes in the calibration that were necessary to cope with some improvements in the model input data, and the use of more extensive photometry datasets: now the code is shown to successfully simulate also the relatively shallower 2MASS catalogue, which probes mostly the disc at intermediate ages, and the immediate solar neighbourhood as sampled by Hipparcos - in particular its absolute magnitude versus colour diagram -, which contains a somewhat larger fraction of younger stars than deeper surveys. Remarkably, the same model calibration can reproduce well the star counts in all the above-mentioned data sets, that span from the very deep magnitudes of CDFS (16 < R < 23) to the very shallow ones of Hipparcos (V < 8). Significant deviations (above 50 percent in number counts) are found just for fields close to the Galactic Center (since no bulge component was included) and Plane, and for a single set of South Galactic Pole data. The TRILEGAL code is ready to use for the variety of wide-angle surveys in the optical/infrared that will become available in the coming years.
Astrophysical Journal Supplement Series | 2009
Julianne J. Dalcanton; Benjamin F. Williams; Anil C. Seth; Andrew E. Dolphin; Jon A. Holtzman; Keith Rosema; Evan D. Skillman; Andrew A. Cole; Léo Girardi; Stephanie M. Gogarten; I. D. Karachentsev; Knut Olsen; Daniel R. Weisz; Charlotte R. Christensen; Kenneth C. Freeman; Karoline M. Gilbert; Carme Batlle i Gallart; Jason Harris; Paul W. Hodge; Roelof S. de Jong; V. E. Karachentseva; Mario Mateo; Peter B. Stetson; Maritza Tavarez; Dennis Zaritsky; Fabio Governato; Thomas P. Quinn
The ACS Nearby Galaxy Survey Treasury (ANGST) is a systematic survey to establish a legacy of uniform multi-color photometry of resolved stars for a volume-limited sample of nearby galaxies (D 14 million stars. In this paper we present the details of the sample selection, imaging, data reduction, and the resulting photometric catalogs, along with an analysis of the photometric uncertainties (systematic and random), for both ACS and WFPC2 imaging. We also present uniformly derived relative distances measured from the apparent magnitude of the TRGB.
Astronomy and Astrophysics | 2008
G. Bertelli; Léo Girardi; Paola Marigo; E. Nasi
Context. In many astrophysical contexts, the helium content of stars may differ significantly from those usually assumed in evolution- ary calculations. Aims. In order to improve upon this situation, we have computed tracks and isochrones in the range of initial masses 0.15−20 Mfor a grid of 39 chemical compositions with the metal content Z between 0.0001 and 0.070 and helium content Y between 0.23 and 0.46. Methods. The Padova stellar evolution code has been implemented with updated physics. New synthetic TP-AGB models allow the extension of stellar models and isochrones until the end of the thermal pulses along the AGB. Software tools for the bidimensional interpolation (in Y and Z) of the tracks have been tuned. Results. This first paper presents tracks for low mass stars (from 0.15 to 2.5 M� ) with scaled-solar abundances and the corresponding isochrones from very old ages down to about 1 Gyr. Conclusions. Tracks and isochrones are made available in tabular form for the adopted grid of chemical compositions in the plane Z-Y. As soon as possible an interactive web interface will allow users to obtain isochrones of any chemical composition and also simulated stellar populations with different Y(Z) helium-to-metal enrichment laws.
The Astrophysical Journal | 2010
Léo Girardi; Benjamin F. Williams; Karoline M. Gilbert; Philip Rosenfield; Julianne J. Dalcanton; Paola Marigo; Martha L. Boyer; Andrew E. Dolphin; Daniel R. Weisz; J. Melbourne; Knut Olsen; Anil C. Seth; Evan D. Skillman
In an attempt to constrain evolutionary models of the asymptotic giant branch (AGB) phase at the limit of low masses and low metallicities, we have examined the luminosity functions and number ratios between AGB and red giant branch (RGB) stars from a sample of resolved galaxies from the ACS Nearby Galaxy Survey Treasury. This database provides Hubble Space Telescope optical photometry together with maps of completeness, photometric errors, and star formation histories for dozens of galaxies within 4 Mpc. We select 12 galaxies characterized by predominantly metal-poor populations as indicated by a very steep and blue RGB, and which do not present any indication of recent star formation in their color-magnitude diagrams. Thousands of AGB stars brighter than the tip of the RGB (TRGB) are present in the sample (between 60 and 400 per galaxy), hence, the Poisson noise has little impact in our measurements of the AGB/RGB ratio. We model the photometric data with a few sets of thermally pulsing AGB (TP-AGB) evolutionary models with different prescriptions for the mass loss. This technique allows us to set stringent constraints on the TP-AGB models of low-mass, metal-poor stars (with M < 1.5 M_⊙, [Fe/H] ≾ -1.0). Indeed, those which satisfactorily reproduce the observed AGB/RGB ratios have TP-AGB lifetimes between 1.2 and 1.8 Myr, and finish their nuclear burning lives with masses between 0.51 and 0.55 M_⊙. This is also in good agreement with recent observations of white dwarf masses in the M4 old globular cluster. These constraints can be added to those already derived from Magellanic Cloud star clusters as important mileposts in the arduous process of calibrating AGB evolutionary models.
Astronomy and Astrophysics | 2007
Paola Marigo; Léo Girardi
We present new synthetic models of the TP-AGB evolution. They are computed for 7 values of initial metal content (Z from 0.0001 to 0.03) and for initial masses between 0.5 and 5.0 M� , thus extending the low- and intermediate-mass tracks of Girardi et al. (2000) to the beginning of the post-AGB phase. The calculations are performed by means of a synthetic code that incorporates many recent improvements, among which we mention: (1) the use of detailed and revised analytical relations to describe the evolution of quiescent luminosity, inter-pulse period, third dredge-up, hot bottom burning, pulse cycle luminosity variations, etc.; (2) the use of variable molecular opacities – i.e. opacities consistent with the changing photospheric chemical composition – in the integration of a complete envelope model, instead of the standard choice of scaled-solar opacities; (3) the use of formalisms for the mass-loss rates derived from pulsating dust-driven wind models of C- and O-rich AGB stars; and (4) the switching of pulsation modes between the first overtone and the fundamental one along the evolution, which has consequences in terms of the history of mass loss. It follows that, in addition to the time evolution on the HR diagram, the new models also consistently predict variations in surface chemical compositions, pulsation modes and periods, and mass-loss rates. The onset and efficiency of the third dredge-up process are calibrated in order to reproduce basic observables like the carbon star luminosity functions in the Magellanic Clouds and TP-AGB lifetimes (star counts) in Magellanic Cloud clusters. In this first paper, we describe in detail the model ingredients, basic properties, and calibration. Particular emphasis is put on illustrating the effects of using variable molecular opacities. Forthcoming papers will present the theoretical isochrones and chemical yields derived from these tracks and additional tests performed with the aid of a complete population synthesis code.
Astronomy and Astrophysics | 2006
L. da Silva; Léo Girardi; Luca Pasquini; J. Setiawan; O. von der Lühe; J. R. De Medeiros; A. Hatzes; M. P. Döllinger; A. Weiss
We present the detailed spectroscopic analysis of 72 evolved stars, which were previously studied for accurate radial velocity variations. Using one Hyades giant and another well studied star as the reference abundance, we determine the [Fe/H] for the whole sample. These metallicities, together with the Teff values and the absolute V-band magnitude derived from Hipparcos parallaxes, are used to estimate basic stellar parameters (ages, masses, radii, (B−V)0 and log g) using theoretical isochrones and a Bayesian estimation method. The (B−V)0 values so estimated turn out to be in excellent agreement (to within ∼0.05 mag) with the observed (B−V), confirming the reliability of the Teff−(B−V)0 relation used in the isochrones. On the other hand, the estimated log g values are typically 0.2 dex lower than those derived from spectroscopy; this effect has a negligible impact on [Fe/H] determinations. The estimated diameters θ have been compared with limb darkening-corrected ones measured with independent methods, finding an agreement better than 0.3 mas within the 1 <θ< 10 mas interval (or, alternatively, finding mean differences of just 6%). We derive the age-metallicity relation for the solar neighborhood; for the first time to our knowledge, such a relation has been derived from observations of field giants rather than from open clusters and field dwarfs and subdwarfs. The age-metallicity relation is characterized by close-to-solar metallicities for stars younger than ∼4 Gyr, and by a large [Fe/H] spread with a trend towards lower metallicities for higher ages. In disagreement with other studies, we find that the [Fe/H] dispersion of young stars (less than 1 Gyr) is comparable to the observational errors, indicating that stars in the solar neighbourhood are formed from interstellar matter of quite homogeneous chemical composition. The three giants of our sample which have been proposed to host planets are not metal rich; this result is at odds with those for main sequence stars. However, two of these stars have masses much larger than a solar mass so we may be sampling a different stellar population from most radial velocity searches for extrasolar planets. We also confirm the previous indication that the radial velocity variability tends to increase along the RGB, and in particular with the stellar radius.
The Astrophysical Journal | 2015
K. Bechtol; A. Drlica-Wagner; E. Balbinot; A. Pieres; J. D. Simon; Brian Yanny; B. Santiago; Risa H. Wechsler; Joshua A. Frieman; Alistair R. Walker; P. Williams; Eduardo Rozo; Eli S. Rykoff; A. Queiroz; E. Luque; A. Benoit-Lévy; Douglas L. Tucker; I. Sevilla; Robert A. Gruendl; L. N. da Costa; A. Fausti Neto; M. A. G. Maia; T. D. Abbott; S. Allam; R. Armstrong; A. Bauer; G. M. Bernstein; R. A. Bernstein; E. Bertin; David J. Brooks
We report the discovery of eight new Milky Way companions in ~1,800 deg^2 of optical imaging data collected during the first year of the Dark Energy Survey (DES). Each system is identified as a statistically significant over-density of individual stars consistent with the expected isochrone and luminosity function of an old and metal-poor stellar population. The objects span a wide range of absolute magnitudes (M_V from -2.2 mag to -7.4 mag), physical sizes (10 pc to 170 pc), and heliocentric distances (30 kpc to 330 kpc). Based on the low surface brightnesses, large physical sizes, and/or large Galactocentric distances of these objects, several are likely to be new ultra-faint satellite galaxies of the Milky Way and/or Magellanic Clouds. We introduce a likelihood-based algorithm to search for and characterize stellar over-densities, as well as identify stars with high satellite membership probabilities. We also present completeness estimates for detecting ultra-faint galaxies of varying luminosities, sizes, and heliocentric distances in the first-year DES data.
Science | 2011
W. J. Chaplin; Hans Kjeldsen; Jørgen Christensen-Dalsgaard; Sarbani Basu; A. Miglio; T. Appourchaux; Timothy R. Bedding; Y. Elsworth; R. A. García; R. L. Gilliland; Léo Girardi; G. Houdek; C. Karoff; S. D. Kawaler; T. S. Metcalfe; J. Molenda-Żakowicz; M. J. P. F. G. Monteiro; M. J. Thompson; G. A. Verner; J. Ballot; Alfio Bonanno; I. M. Brandão; Anne-Marie Broomhall; H. Bruntt; T. L. Campante; E. Corsaro; O. L. Creevey; G. Doğan; Lisa Esch; Ning Gai
Measurements of 500 Sun-like stars show that their properties differ from those predicted by stellar population models. In addition to its search for extrasolar planets, the NASA Kepler mission provides exquisite data on stellar oscillations. We report the detections of oscillations in 500 solar-type stars in the Kepler field of view, an ensemble that is large enough to allow statistical studies of intrinsic stellar properties (such as mass, radius, and age) and to test theories of stellar evolution. We find that the distribution of observed masses of these stars shows intriguing differences to predictions from models of synthetic stellar populations in the Galaxy.