Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leo McCluskey is active.

Publication


Featured researches published by Leo McCluskey.


Nature | 2010

Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS

Andrew Elden; Hyung-Jun Kim; Michael P. Hart; Alice Chen-Plotkin; Brian S. Johnson; Xiaodong Fang; Maria Armakola; Felix Geser; Robert Greene; Min Min Lu; Arun Padmanabhan; Dana Clay-Falcone; Leo McCluskey; Lauren Elman; Denise Juhr; Peter J. Gruber; Udo Rüb; Georg Auburger; John Q. Trojanowski; Virginia M.-Y. Lee; Vivianna M. Van Deerlin; Nancy M. Bonini; Aaron D. Gitler

The causes of amyotrophic lateral sclerosis (ALS), a devastating human neurodegenerative disease, are poorly understood, although the protein TDP-43 has been suggested to have a critical role in disease pathogenesis. Here we show that ataxin 2 (ATXN2), a polyglutamine (polyQ) protein mutated in spinocerebellar ataxia type 2, is a potent modifier of TDP-43 toxicity in animal and cellular models. ATXN2 and TDP-43 associate in a complex that depends on RNA. In spinal cord neurons of ALS patients, ATXN2 is abnormally localized; likewise, TDP-43 shows mislocalization in spinocerebellar ataxia type 2. To assess the involvement of ATXN2 in ALS, we analysed the length of the polyQ repeat in the ATXN2 gene in 915 ALS patients. We found that intermediate-length polyQ expansions (27–33 glutamines) in ATXN2 were significantly associated with ALS. These data establish ATXN2 as a relatively common ALS susceptibility gene. Furthermore, these findings indicate that the TDP-43–ATXN2 interaction may be a promising target for therapeutic intervention in ALS and other TDP-43 proteinopathies.


Lancet Neurology | 2012

Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: A cross-sectional study

Elisa Majounie; Alan E. Renton; Kin Mok; Elise G.P. Dopper; Adrian James Waite; Sara Rollinson; Adriano Chiò; Gabriella Restagno; Nayia Nicolaou; Javier Simón-Sánchez; John C. van Swieten; Yevgeniya Abramzon; Janel O. Johnson; Michael Sendtner; Roger Pamphlett; Richard W. Orrell; Simon Mead; Katie Sidle; Henry Houlden; Jonathan D. Rohrer; Karen E. Morrison; Hardev Pall; Kevin Talbot; Olaf Ansorge; Dena Hernandez; Sampath Arepalli; Mario Sabatelli; Gabriele Mora; Massimo Corbo; Fabio Giannini

Summary Background We aimed to accurately estimate the frequency of a hexanucleotide repeat expansion in C9orf72 that has been associated with a large proportion of cases of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Methods We screened 4448 patients diagnosed with ALS (El Escorial criteria) and 1425 patients with FTD (Lund-Manchester criteria) from 17 regions worldwide for the GGGGCC hexanucleotide expansion using a repeat-primed PCR assay. We assessed familial disease status on the basis of self-reported family history of similar neurodegenerative diseases at the time of sample collection. We compared haplotype data for 262 patients carrying the expansion with the known Finnish founder risk haplotype across the chromosomal locus. We calculated age-related penetrance using the Kaplan-Meier method with data for 603 individuals with the expansion. Findings In patients with sporadic ALS, we identified the repeat expansion in 236 (7·0%) of 3377 white individuals from the USA, Europe, and Australia, two (4·1%) of 49 black individuals from the USA, and six (8·3%) of 72 Hispanic individuals from the USA. The mutation was present in 217 (39·3%) of 552 white individuals with familial ALS from Europe and the USA. 59 (6·0%) of 981 white Europeans with sporadic FTD had the mutation, as did 99 (24·8%) of 400 white Europeans with familial FTD. Data for other ethnic groups were sparse, but we identified one Asian patient with familial ALS (from 20 assessed) and two with familial FTD (from three assessed) who carried the mutation. The mutation was not carried by the three Native Americans or 360 patients from Asia or the Pacific Islands with sporadic ALS who were tested, or by 41 Asian patients with sporadic FTD. All patients with the repeat expansion had (partly or fully) the founder haplotype, suggesting a one-off expansion occurring about 1500 years ago. The pathogenic expansion was non-penetrant in individuals younger than 35 years, 50% penetrant by 58 years, and almost fully penetrant by 80 years. Interpretation A common Mendelian genetic lesion in C9orf72 is implicated in many cases of sporadic and familial ALS and FTD. Testing for this pathogenic expansion should be considered in the management and genetic counselling of patients with these fatal neurodegenerative diseases. Funding Full funding sources listed at end of paper (see Acknowledgments).


Lancet Neurology | 2007

Efficacy of minocycline in patients with amyotrophic lateral sclerosis: a phase III randomised trial

Paul H. Gordon; Dan H. Moore; Robert G. Miller; Julaine Florence; Joseph L. Verheijde; Carolyn Doorish; Joan F. Hilton; G Mark Spitalny; Robert B. MacArthur; Hiroshi Mitsumoto; Hans E Neville; Kevin B. Boylan; Tahseen Mozaffar; Jerry M. Belsh; John Ravits; Richard S. Bedlack; Michael C. Graves; Leo McCluskey; Richard J. Barohn; Rup Tandan

BACKGROUND Minocycline has anti-apoptotic and anti-inflammatory effects in vitro, and extends survival in mouse models of some neurological conditions. Several trials are planned or are in progress to assess whether minocycline slows human neurodegeneration. We aimed to test the efficacy of minocycline as a treatment for amyotrophic lateral sclerosis (ALS). METHODS We did a multicentre, randomised placebo-controlled phase III trial. After a 4-month lead-in phase, 412 patients were randomly assigned to receive placebo or minocycline in escalating doses of up to 400 mg/day for 9 months. The primary outcome measure was the difference in rate of change in the revised ALS functional rating scale (ALSFRS-R). Secondary outcome measures were forced vital capacity (FVC), manual muscle testing (MMT), quality of life, survival, and safety. Analysis was by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT00047723. FINDINGS ALSFRS-R score deterioration was faster in the minocycline group than in the placebo group (-1.30 vs -1.04 units/month, 95% CI for difference -0.44 to -0.08; p=0.005). Patients on minocycline also had non-significant tendencies towards faster decline in FVC (-3.48 vs -3.01, -1.03 to 0.11; p=0.11) and MMT score (-0.30 vs -0.26, -0.08 to 0.01; p=0.11), and greater mortality during the 9-month treatment phase (hazard ratio=1.32, 95% CI 0.83 to 2.10; p=0.23) than did patients on placebo. Quality-of-life scores did not differ between the treatment groups. Non-serious gastrointestinal and neurological adverse events were more common in the minocycline group than in the placebo group, but these events were not significantly related to the decline in ALSFRS-R score. INTERPRETATION Our finding that minocycline has a harmful effect on patients with ALS has implications for trials of minocycline in patients with other neurological disorders, and for how potential neuroprotective agents are screened for use in patients with ALS.


Science | 2015

Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways

Elizabeth T. Cirulli; Brittany N. Lasseigne; Slavé Petrovski; Peter C. Sapp; Patrick A. Dion; Claire S. Leblond; Julien Couthouis; Yi Fan Lu; Quanli Wang; Brian Krueger; Zhong Ren; Jonathan Keebler; Yujun Han; Shawn Levy; Braden E. Boone; Jack R. Wimbish; Lindsay L. Waite; Angela L. Jones; John P. Carulli; Aaron G. Day-Williams; John F. Staropoli; Winnie Xin; Alessandra Chesi; Alya R. Raphael; Diane McKenna-Yasek; Janet Cady; J.M.B.Vianney de Jong; Kevin Kenna; Bradley Smith; Simon Topp

New players in Lou Gehrigs disease Amyotrophic lateral sclerosis (ALS), often referred to as “Lou Gehrigs disease,” is a progressive neurodegenerative disease that affects nerve cells in the brain and the spinal cord. Cirulli et al. sequenced the expressed genes of nearly 3000 ALS patients and compared them with those of more than 6000 controls (see the Perspective by Singleton and Traynor). They identified several proteins that were linked to disease in patients. One such protein, TBK1, is implicated in innate immunity and autophagy and may represent a therapeutic target. Science, this issue p. 1436; see also p. 1422 Analysis of the expressed genes of nearly 2900 patients with amyotrophic lateral sclerosis and about 6400 controls reveals a disease predisposition–associated gene. [Also see Perspective by Singleton and Traynor] Amyotrophic lateral sclerosis (ALS) is a devastating neurological disease with no effective treatment. We report the results of a moderate-scale sequencing study aimed at increasing the number of genes known to contribute to predisposition for ALS. We performed whole-exome sequencing of 2869 ALS patients and 6405 controls. Several known ALS genes were found to be associated, and TBK1 (the gene encoding TANK-binding kinase 1) was identified as an ALS gene. TBK1 is known to bind to and phosphorylate a number of proteins involved in innate immunity and autophagy, including optineurin (OPTN) and p62 (SQSTM1/sequestosome), both of which have also been implicated in ALS. These observations reveal a key role of the autophagic pathway in ALS and suggest specific targets for therapeutic intervention.


Annals of Neurology | 2013

Stages of pTDP-43 pathology in amyotrophic lateral sclerosis

Johannes Brettschneider; Kelly Del Tredici; Jon B. Toledo; John L. Robinson; David J. Irwin; Murray Grossman; EunRan Suh; Vivianna M. Van Deerlin; Elisabeth McCarty Wood; Young Min Baek; Linda Kwong; Edward B. Lee; Lauren Elman; Leo McCluskey; Lubin Fang; Simone Feldengut; Albert C. Ludolph; Virginia M.-Y. Lee; Heiko Braak; John Q. Trojanowski

To see whether the distribution patterns of phosphorylated 43kDa TAR DNA‐binding protein (pTDP‐43) intraneuronal inclusions in amyotrophic lateral sclerosis (ALS) permit recognition of neuropathological stages.


Muscle & Nerve | 1997

Direct muscle stimulation in acute quadriplegic myopathy

Mark M. Rich; Shawn J. Bird; Eric C. Raps; Leo McCluskey; James W. Teener

We have previously found that muscle is electrically inexcitable in severe acute quadriplegic myopathy (AQM). In contrast, muscle retains normal electrical excitability in peripheral neuropathy. To study the relationship between muscle electrical excitability and all types of flaccid weakness occurring in the intensive care unit, we identified 14 critically ill, weak patients and measured the amplitude of compound muscle action potentials (CMAPs) obtained with direct muscle stimulation (dmCMAP) and with nerve stimulation (neCMAP). In 11 of 14 patients dmCMAP amplitudes were reduced and the ratio of the neCMAP amplitude to the dmCMAP amplitude (nerve/muscle ratio) was indicative of loss of muscle electrical excitability. In 2 other patients, the nerve/muscle ratio indicated neuropathy. Direct muscle stimulation may allow differentiation of AQM from neuropathy even in comatose or encephalopathic critically ill patients. AQM may be more common than has previously been appreciated.


Proceedings of the National Academy of Sciences of the United States of America | 2011

A yeast functional screen predicts new candidate ALS disease genes

Julien Couthouis; Michael P. Hart; James Shorter; Mariely DeJesus-Hernandez; Renske Erion; Rachel Oristano; Annie X. Liu; Daniel Ramos; Niti Jethava; Divya Hosangadi; James Epstein; Ashley Chiang; Zamia Diaz; Tadashi Nakaya; Fadia Ibrahim; Hyung-Jun Kim; Jennifer A. Solski; Kelly L. Williams; Jelena Mojsilovic-Petrovic; Caroline Ingre; Kevin B. Boylan; Neill R. Graff-Radford; Dennis W. Dickson; Dana Clay-Falcone; Lauren Elman; Leo McCluskey; Robert Greene; Robert G. Kalb; Virginia M.-Y. Lee; John Q. Trojanowski

Amyotrophic lateral sclerosis (ALS) is a devastating and universally fatal neurodegenerative disease. Mutations in two related RNA-binding proteins, TDP-43 and FUS, that harbor prion-like domains, cause some forms of ALS. There are at least 213 human proteins harboring RNA recognition motifs, including FUS and TDP-43, raising the possibility that additional RNA-binding proteins might contribute to ALS pathogenesis. We performed a systematic survey of these proteins to find additional candidates similar to TDP-43 and FUS, followed by bioinformatics to predict prion-like domains in a subset of them. We sequenced one of these genes, TAF15, in patients with ALS and identified missense variants, which were absent in a large number of healthy controls. These disease-associated variants of TAF15 caused formation of cytoplasmic foci when expressed in primary cultures of spinal cord neurons. Very similar to TDP-43 and FUS, TAF15 aggregated in vitro and conferred neurodegeneration in Drosophila, with the ALS-linked variants having a more severe effect than wild type. Immunohistochemistry of postmortem spinal cord tissue revealed mislocalization of TAF15 in motor neurons of patients with ALS. We propose that aggregation-prone RNA-binding proteins might contribute very broadly to ALS pathogenesis and the genes identified in our yeast functional screen, coupled with prion-like domain prediction analysis, now provide a powerful resource to facilitate ALS disease gene discovery.


JAMA Neurology | 2008

Evidence of Multisystem Disorder in Whole-Brain Map of Pathological TDP-43 in Amyotrophic Lateral Sclerosis

Felix Geser; Nicholas J. Brandmeir; Linda K. Kwong; Maria Martinez-Lage; Lauren Elman; Leo McCluskey; Sharon X. Xie; Virginia M.-Y. Lee; John Q. Trojanowski

BACKGROUND Pathological 43-kDa transactivating responsive sequence DNA-binding protein (TDP-43) has been identified recently as the major disease protein in amyotrophic lateral sclerosis (ALS), and in frontotemporal lobar degeneration with ubiquitinated inclusions, with or without motor neuron disease, but the distribution of TDP-43 pathology in ALS may be more widespread than previously described. OBJECTIVE To determine the extent of TDP-43 pathology in the central nervous systems of patients with clinically confirmed and autopsy confirmed diagnoses of ALS. DESIGN Performance of an immunohistochemical whole-central nervous system scan for evidence of pathological TDP-43 in ALS patients. SETTING An academic medical center. PARTICIPANTS We included 31 patients with clinically and pathologically confirmed ALS and 8 control participants. MAIN OUTCOME MEASURES Immunohistochemistry and double-labeling immunofluorescence to assess the frequency and severity of TDP-43 pathology. RESULTS In addition to the stereotypical involvement of upper and lower motor neurons, neuronal and glial TDP-43 pathology was present in multiple areas of the central nervous systems of ALS patients, including in the nigro-striatal system, the neocortical and allocortical areas, and the cerebellum, but not in those of the controls. CONCLUSIONS These findings suggest that ALS does not selectively affect only the pyramidal motor system, but rather is a multisystem neurodegenerative TDP-43 proteinopathy.


American Journal of Pathology | 2008

Enrichment of C-Terminal Fragments in TAR DNA-Binding Protein-43 Cytoplasmic Inclusions in Brain but not in Spinal Cord of Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis

Lionel M. Igaz; Linda K. Kwong; Yan Xu; Adam C. Truax; Kunihiro Uryu; Manuela Neumann; Christopher M. Clark; Lauren Elman; Bruce L. Miller; Murray Grossman; Leo McCluskey; John Q. Trojanowski; Virginia M.-Y. Lee

TAR DNA-binding protein (TDP-43) has been recently described as a major pathological protein in both frontotemporal dementia with ubiquitin-positive inclusions (FTLD-U) and amyotrophic lateral sclerosis. However, little is known about the relative abundance and distribution of different pathological TDP-43 species, which include hyperphosphorylated, ubiquitinated, and N-terminally cleaved TDP-43. Here, we developed novel N-terminal (N-t) and C-terminal (C-t)-specific TDP-43 antibodies and performed biochemical and immunohistochemical studies to analyze cortical, hippocampal, and spinal cord tissue from frontotemporal dementia with ubiquitin-positive inclusions and amyotrophic lateral sclerosis cases. C-t-specific TDP-43 antibodies revealed similar abundance, morphology, and distribution of dystrophic neurites and neuronal cytoplasmic inclusions in cortex and hippocampus compared with previously described pan-TDP-43 antibodies. By contrast, N-t-specific TDP-43 antibodies only detected a small subset of these lesions. Biochemical studies confirmed the presence of C-t TDP-43 fragments but not extreme N-t fragments. Surprisingly, immunohistochemical analysis of inclusions in spinal cord motor neurons in both diseases showed that they are N-t and C-t positive. TDP-43 inclusions in Alzheimers disease brains also were examined, and similar enrichment in C-t TDP-43 fragments was observed in cortex and hippocampus. These results show that the composition of the inclusions in brain versus spinal cord tissues differ, with an increased representation of C-t TDP-43 fragments in cortical and hippocampal regions. Therefore, regionally different pathogenic processes may underlie the development of abnormal TDP-43 proteinopathies.


Neurology | 2009

Subcutaneous IGF-1 is not beneficial in 2-year ALS trial

Eric J. Sorenson; A. J. Windbank; Jayawant N. Mandrekar; William R. Bamlet; Stanley H. Appel; Carmel Armon; Paul E. Barkhaus; Peter E. Bosch; Kevin B. Boylan; William S. David; Eva L. Feldman; Jonathan D. Glass; Laurie Gutmann; J. I. Katz; Wendy M. King; Carlos A. Luciano; Leo McCluskey; Steven Nash; D. S. Newman; Robert M. Pascuzzi; Erik P. Pioro; L. J. Sams; Stephen N. Scelsa; Ericka Simpson; S. H. Subramony; Ezgi Tiryaki; Charles A. Thornton

Background: Previous human clinical trials of insulin-like growth factor type I (IGF-1) in amyotrophic lateral sclerosis (ALS) have been inconsistent. This phase III, randomized, double-blind, placebo-controlled study was undertaken to address whether IGF-1 benefited patients with ALS. Methods: A total of 330 patients from 20 medical centers were randomized to receive 0.05 mg/kg body weight of human recombinant IGF-1 given subcutaneously twice daily or placebo for 2 years. The primary outcome measure was change in their manual muscle testing score. Secondary outcome measures included tracheostomy-free survival and rate of change in the revised ALS functional rating scale. Intention to treat analysis was used. Results: There was no difference between treatment groups in the primary or secondary outcome measures after the 2-year treatment period. Conclusions: Insulin-like growth factor type I does not provide benefit for patients with amyotrophic lateral sclerosis. GLOSSARY: ALS = amyotrophic lateral sclerosis; ALSFRS-r = revised ALS functional rating scale; AUC = area under the curve; DVT = deep venous thromboses; IGF-1 = insulin-like growth factor type I; MMT = manual muscle testing; PE = pulmonary embolisms.

Collaboration


Dive into the Leo McCluskey's collaboration.

Top Co-Authors

Avatar

Lauren Elman

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Murray Grossman

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David J. Irwin

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Corey T. McMillan

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew Siderowf

Avid Radiopharmaceuticals

View shared research outputs
Top Co-Authors

Avatar

Ashley Boller

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge