Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leo T. Furcht is active.

Publication


Featured researches published by Leo T. Furcht.


Developmental Biology | 1983

Neurite extension by peripheral and central nervous system neurons in response to substratum-bound fibronectin and laminin☆

Sherry L. Rogers; Paul C. Letourneau; Sally L. Palm; James B. McCarthy; Leo T. Furcht

Dissociated neurons from embryonic chick dorsal root and sympathetic ganglia (peripheral neurons) and from spinal cord and retina (central nervous system neurons) were cultured on plastic substrata treated with purified fibronectin and laminin. Both central and peripheral neurons attached to and extended neurites on laminin. In contrast, only peripheral neurons initiated neurites on fibronectin; central neurons cultured under identical conditions aggregated into clusters and did not extend neurites. Neurite length, number of neurites initiated, and extent of neurite branching on fibronectin- and laminin-treated substrata were evaluated and compared with similar measurements of neuronal response to poly-L-lysine-treated plastic. Poly-L-lysine provides an adhesive surface for neurite elongation, but fibronectin and laminin appear to promote more rapid neurite elongation. Our observations suggest that neuronal interaction with these glycoproteins may involve neuron-specific cell surface components. These responses to laminin and fibronectin in vitro may be related to the presence or absence of these glycoproteins in specific extracellular environments during specific developmental stages.


Cancer and Metastasis Reviews | 1985

The role of cell adhesion proteins—laminin and fibronectin—in the movement of malignant and metastatic cells

James B. McCarthy; Michael L. Basara; Sally L. Palm; Daryl F. Sas; Leo T. Furcht

SummaryMetastasizing tumor cells must traverse diverse extracellular matrices during dissemination. Extracellular matrices consist of two basic types, interstitial stroma and basement membranes. Extracellular matrices are chemically complex structures that interact with cell surfaces by a number of mechanisms. There has been a great deal of effort in recent years to understand the molecular nature of extracellular matrices, especially as it relates to the adhesion of normal and malignant cell types. Adhesive noncollagenous glycoproteins, such as laminin and fibronectin, serve pivotal roles in basement membrane and stromal matrices, respectively. These proteins participate in establishing the architecture of extracellular matrices as well as in attaching to the surface of cells and affecting cellular phenotype. This phenotypic effect ranges from adhesion and motility to growth and differentiation. Changes in adhesive characteristics and motility of cells have long been suspected to play a role in mediating the spread of malignant neoplasms. This article is designed to review extracellular matrix constituents that are currently known that can mediate the adhesion and motility of malignant neoplasms. The adhesion of normal and malignant cells to matrices is a complex process mediated by several distinct mechanisms which are initially manifested by changes in cytoskeletal architecture. The topic of normal and malignant cell adhesion to matrices will also be discussed in this regard, since any explanation of tumor cell migration must account for the complex dynamic interactions of the cell surface with the substratum as well as with the cytoskeleton. Finally, current efforts designed to understant the molecular nature of tumor cell:matrix interactions that contribute to metastatic behavior will also be discussed. The rationale behind these studies is that selective inhibition of specific tumor:extracellular matrix interactions can provide an avenue for therapeutic intervention of metastatic cancer.


Clinical Cancer Research | 2004

The Potential Role of Neutrophils in Promoting the Metastatic Phenotype of Tumors Releasing Interleukin-8

Joseph E. De Larco; Beverly Wuertz; Leo T. Furcht

In the last decade, several groups have shown a direct correlation between the inappropriate or ectopic release of interleukin (IL)-8 by tumor cells in vitro and their growth and metastatic potential using in vivo models of tumor growth. IL-8 is a potent neutrophil chemoattractant. Neutrophils, as “early responders” to wounds and infections, release enzymes to remodel the extracellular matrix of the tissues through which they migrate to reach the site of the wound or infection. It is proposed that the host’s cellular response to IL-8 released by tumor cells enhances angiogenesis and contributes to tumor growth and progression. The activities released by the responding neutrophils could serve as enablers of tumor cell migration through the extracellular matrix, helping them enter the vasculature and journey to new, metastatic sites. The reactive oxygen species produced by neutrophilic oxidases to kill invading organisms have the potential to interact with tumor cells to attenuate their apoptotic cascade and increase their mutational rate. It is proposed that the increase in metastatic potential of tumors ectopically releasing IL-8 is, in part, attributable to their ability to attract neutrophils. Discussed here are possible mechanisms by which the neutrophils responding to ectopic IL-8 contribute to the in vivo growth, progression, and metastatic potential of tumor cells. Possible targets are also presented for the development of therapies to attenuate the effects of the ectopic IL-8 release by tumor cells.


Nature Cell Biology | 1999

Melanoma chondroitin sulphate proteoglycan regulates cell spreading through Cdc42, Ack-1 and p130cas.

Kathryn M. Eisenmann; James B. McCarthy; Melanie A. Simpson; Patricia J. Keely; Jun-Lin Guan; Kouichi Tachibana; Louis Lim; Edward Manser; Leo T. Furcht; Joji Iida

Melanoma chondroitin sulphate proteoglycan (MCSP) is a cell-surface antigen that has been implicated in the growth and invasion of melanoma tumours. Although this antigen is expressed early in melanoma progression, its biological function is unknown. MCSP can stimulate the integrin-α4β1-mediated adhesion and spreading of melanoma cells. Here we show that stimulated MCSP recruits tyrosine-phosphorylated p130cas, an adaptor protein important in tumour cell motility and invasion. MCSP stimulation also results in a pronounced activation and recruitment of the Rho-family GTPase Cdc42. MCSP-induced spreading of melanoma cells is dependent upon active Cdc42, a Cdc42-associated tyrosine kinase (Ack-1) and tyrosine phosphorylation of p130cas. Furthermore, vectors inhibiting Ack-1 or Cdc42 expression and/or function abrogate MCSP-induced tyrosine phosphorylation and recruitment of p130cas. Our findings indicate that MCSP may modify tumour growth or invasion by a unique signal-transduction pathway that links Cdc42 activation to downstream tyrosine phosphorylation and subsequent cytoskeletal reorganization.


Journal of Biological Chemistry | 1996

Promotion of Fibroblast Adhesion by Triple-helical Peptide Models of Type I Collagen-derived Sequences

Beate Grab; Andrew J. Miles; Leo T. Furcht; Gregg B. Fields

The dissection of the activities mediated by type I collagen requires an approach by which the influence of triple-helical conformation can be evaluated. The αβ and αβ integrin binding sites within type I collagen are dependent upon triple-helical conformation and contained within residues 124-822 from α1(I). Seven α1(I)-derived triple-helical peptides (THPs) were synthesized based on charge clustering (α1(I)256-270, α1(I)385-396, α1(I)406-417, α1(I)415-423, α1(I)448-456, α1(I)496-507, and α1(I)526-537). Three additional THPs were synthesized (α1(I)85-96, α1(I)433-441, and α1(I)772-786) based on previously described or proposed activities (Kleinman, H. K., McGoodwin, E. B., Martin, G. R., Klebe, R. J., Fietzek, P. P., and Wooley, D. E.(1978) J. Biol. Chem. 253, 5642-5646; Staatz, W. D., Fok, K. F., Zutter, M. M., Adams, S. P., Rodriguez, B. A., and Santoro, S. A.(1991) J. Biol. Chem. 266, 7363-7367; San Antonio, J. D., Lander, A. D., Karnovsky, M. J., and Slayter, H. S.(1994) J. Cell Biol. 125, 1179-1188). Of the ten THPs, α1(I)772-786 THP had the greatest activity, with half-maximal normal dermal fibroblast adhesion occurring at a peptide concentration of 1.6 μM. Triple-helicity was essential for activity of this sequence, as the non-triple-helical peptide analog (α1(I)772-786 SSP) exhibited considerably lower levels of cell adhesion promotion even at peptide concentrations as high as 100 μM. Within the sequence itself, residues 784-786 (Gly-Leu-Hyp) were important for cellular recognition, as the α1(I)772-783 THP had greatly reduced cell adhesion activity compared with α1(I)772-786 THP. Preliminary studies indicate that the β integrin subunit mediates fibroblast adhesion to α1(I)772-786 THP. The identification of fibroblast integrin binding sites within type I collagen may have important implications for understanding collagen metabolism.


Developmental Biology | 1988

Immunoreactivity for laminin in the developing ventral longitudinal pathway of the brain.

Paul C. Letourneau; Anne M. Madsen; Sally L. Palm; Leo T. Furcht

The first long tract to form in the brain of a vertebrate embryo is the ventral longitudinal pathway. In order to investigate what chemical cues may guide nerve growth cones along this pathway, affinity-purified antibodies to laminin and collagen type IV were used to stain sections of mouse embryos from Embryonic Days 8 through 17. A monoclonal anti-neurofilament antibody was used to show the development of the ventral longitudinal pathway in relationship to immunoreactivity for laminin and collagen type IV. At Day 8 fluorescent immunoreactivity for laminin is bright in the external limiting membrane of the neural tube, but the neuroepithelium does not show bright laminin or neurofilament immunoreactivity. At E9 the ventral longitudinal pathway is forming and punctate immunoreactivity for laminin is present on the surfaces of neuroepithelial cells in the marginal zone, through which axons of the ventral pathway extend. Punctate immunofluorescence for laminin remains concentrated in the marginal zone on Days E10 through E14, but on E16 punctate immunofluorescence was much reduced, although immunoreactivity for laminin remained bright in the maturing pial and arachnoid membranes and on blood vessels in the brain. Immunoreactivity for collagen type IV was strong in the external limiting membrane and on blood vessels, but never showed concentrated punctate immunofluorescence in the marginal zone. These results indicate that laminin may be available on cell surfaces and in extracellular spaces as an adhesive ligand for growth cones during the formation of the ventral longitudinal pathway.


American Journal of Pathology | 2001

A potential role for interleukin-8 in the metastatic phenotype of breast carcinoma cells.

Joseph E. De Larco; Beverly Wuertz; Karen A. Rosner; Steven A. Erickson; David E. Gamache; J. Carlos Manivel; Leo T. Furcht

This study shows a strong correlation between the metastatic potentials of breast carcinoma cell lines and their ectopic expression of interleukin-8 (IL-8). Correlations exist for both constitutive and induced levels of IL-8 released. A correlation was also observed between cell morphology, metastatic potential, and IL-8 profile. Metastatic lines are fusiform in appearance, whereas, nonmetastatic lines are epithelioid. The metastatic potential of two breast carcinoma lines was examined using an orthotopic model of spontaneous metastasis. Metastatic cells formed rapidly growing, poorly differentiated primary tumors that metastasized. Nonmetastatic cells formed rapidly growing differentiated primary tumors that did not produce detectable metastases. Comparison of IL-8 expression by the parental cells and cell cultures developed from primary and metastatic tumors, demonstrates that IL-8 released by cultured cells from the primary tumor is higher than that of the parental cells, and IL-8 released by cultured cells derived from the metastatic lung tumors is greater than that released by cultured cells derived from the primary tumor. These data demonstrate a strong correlation between the metastatic phenotype of a cell and its IL-8 expression, suggesting a role for IL-8 in promoting the metastatic potential of breast tumor cells.


Developmental Biology | 1988

Growth cone guidance by substrate-bound laminin pathways is correlated with neuron-to-pathway adhesivity

James A. Hammarback; James B. McCarthy; Sally L. Palm; Leo T. Furcht; Paul C. Letourneau

Substrate-bound laminin pathways prepared by the method of Hammarback et al. [J.A. Hammarback, S.L. Palm, L.T. Furcht, and P.C. Letourneau (1985). J. Neurosci. Res. 13, 213-220] guided peripheral nervous system neurites (dissociated dorsal root ganglia and sympathetic ganglia) and central nervous system neurites (dissociated spinal cord and brain). Guidance of individual growth cones by 7- to 10-micron-wide laminin pathways was observed using time-lapse video microscopy. Fibronectin pathways, produced by the method used for laminin pathways, did not guide neurites. The guidance effect of laminin pathways was quantified and found to correlate with the concentration of laminin initially applied to the substratum. The concentration of laminin initially applied to the substratum also correlated with increased adhesivity of dorsal root ganglia (DRG) neurons to laminin constituting the pathways relative to uv-irradiated laminin that borders the pathways. The guidance effect of laminin pathways was blocked by anti-laminin antibodies or by laminin but not by anti-fibronectin antibodies. This study demonstrates that guidance of DRG neurites by laminin occurs at the growth cone in a manner consistent with the hypothesis of guidance by differential neuron-to-substratum adhesivity.


Diabetes | 1990

Laminin Alterations After In Vitro Nonenzymatic Glycosylation

Aristidis S. Charonis; L A Reger; Jay E. Dege; Kokkona Kouzi-Koliakos; Leo T. Furcht; Robert M. Wohlhueter; Effie C. Tsilibary

Laminin, a basement membrane protein derived from the matrix of the Engelbreth-Holm-Swarm murine tumor, was nonenzymatically glycosylated in vitro in the presence of increasing glucose concentrations. The amount of glucose incorporated per laminin molecule was shown to be proportional to the molarity of glucose used. Nonenzymatic glycosylation resulted in formation of cross-links and alterations of the cruciform shape of laminin molecules; these alterations were dramatic when high concentrations of glucose were used. One of the functions of laminin, the process of self-assembly, was shown to be impaired after in vitro nonenzymatic glycosylation. Glucose incorporation resulted in a dramatic decrease of long-to-long laminin dimers, which normally form during the initial steps of assembly. Furthermore, nonenzymatic glycosylation of laminin reduced its ability to self-associate into complexes larger than dimers, as judged by turbidimetry. The observed decrease of maximal turbidity was proportional to the degree of nonenzymatic glycosylation. Aminoguanidine, which has been suggested to inhibit cross-link formation, was shown to restore to a large extent the shape of laminin, the percentage of long-to-long arm dimers, and the maximal turbidity when included in the mixtures of laminin and glucose. These data suggest that structural and functional alterations of laminin may be primarily due to formation of crosslinks. Such modifications of laminin (along with our basement membrane components) may contribute to the morphological and physiological changes observed in basement membranes under diabetic conditions.


Cell | 1978

Immunocytochemical localization of fibronectin (LETS protein) on the surface of L6 myoblasts: light and electron microscopic studies

Leo T. Furcht; Deane F. Mosher; Gwen Wendelschafer-Crabb

Abstract Fibronectin (LETS protein) is a major cell surface glycoprotein component of a variety of nontransformed, substrate-attached cells in culture. Its presence has been related to increased adhesive properties. Using the peroxidase-antiperoxidase method to localize antibodies to fibronectin, we have observed that the distribution of fibronectin on L6 myoblasts varies with the density of the culture and the differentiative state of the cells. Low density, undifferentiated cultures of L6 myoblasts have a sparse accumulation of fibronectin; the antibody-antigen reaction indicates its presence on cell membranes, especially where several cells are in proximity. Undifferentiated cells in high density cultures have two forms of fibronectin localization-a diffuse staining on the membrane and a dense staining on an extracellular filamentous matrix. This matrix is composed of filaments ranging from 20–25 nm in diameter which occur singly or coalesce to form bundles. The filaments in this matrix are also observed to have dense globules scattered along their length. These filaments, which are at least in part composed of fibronectin, also react with concanavalin A, as do certain plasma membrane components. In contrast to the observations seen in undifferentiated cells, differentiated cells or myotubes have a diffuse membrane staining with antifibronectin antibodies, and the filamentous form is usually absent.

Collaboration


Dive into the Leo T. Furcht's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joji Iida

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Catherine M. Verfaillie

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Deane F. Mosher

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge