Leo W. Beukeboom
University of Groningen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Leo W. Beukeboom.
Trends in Ecology and Evolution | 2012
Roger K. Butlin; Allan Debelle; Claudius Kerth; Rhonda R. Snook; Leo W. Beukeboom; Ruth F. Castillo Cajas; Wenwen Diao; Martine E. Maan; Silvia Paolucci; Franz J. Weissing; Louis Jacobus Mgn Van De Zande; Anneli Hoikkala; Elzemiek Geuverink; Jackson H. Jennings; Maaria Kankare; K. Emily Knott; Venera I. Tyukmaeva; Christos Zoumadakis; Michael G. Ritchie; Daniel Barker; Elina Immonen; Mark Kirkpatrick; Mohamed A. F. Noor; Constantino Macías Garcia; Thomas Schmitt; Menno Schilthuizen
Speciation has been a major focus of evolutionary biology research in recent years, with many important advances. However, some of the traditional organising principles of the subject area no longer provide a satisfactory framework, such as the classification of speciation mechanisms by geographical context into allopatric, parapatric and sympatry classes. Therefore, we have asked where speciation research should be directed in the coming years. Here, we present a distillation of questions about the mechanisms of speciation, the genetic basis of speciation and the relationship between speciation and diversity. Our list of topics is not exhaustive; rather we aim to promote discussion on research priorities and on the common themes that underlie disparate speciation processes.
Frontiers in Zoology | 2006
Ellen van Wilgenburg; Gerard Driessen; Leo W. Beukeboom
The haplodiploid sex determining mechanism in Hymenoptera (males are haploid, females are diploid) has played an important role in the evolution of this insect order. In Hymenoptera sex is usually determined by a single locus, heterozygotes are female and hemizygotes are male. Under inbreeding, homozygous diploid and sterile males occur which form a genetic burden for a population. We review life history and genetical traits that may overcome the disadvantages of single locus complementary sex determination (sl-CSD). Behavioural adaptations to avoid matings between relatives include active dispersal from natal patches and mating preferences for non-relatives. In non-social species, temporal and spatial segregation of male and female offspring reduces the burden of sl-CSD. In social species, diploid males are produced at the expense of workers and female reproductives. In some social species, diploid males and diploid male producing queens are killed by workers. Diploid male production may have played a role in the evolution or maintenance of polygyny (multiple queens) and polyandry (multiple mating). Some forms of thelytoky (parthenogenetic female production) increase homozygosity and are therefore incompatible with sl-CSD. We discuss a number of hypothetical adaptations to sl-CSD which should be considered in future studies of this insect order.
Journal of Evolutionary Biology | 1998
Leo W. Beukeboom; R. C. Vrijenhoek
Sperm‐dependent (or pseudogamous) forms of parthenogenetic reproduction occur in a wide variety of animals. Inheritance is typically clonal and matroclinous (of female descent), but sperm are needed to initiate normal development. As opposed to true parthenogenesis (i.e., sperm‐independent reproduction), pseudogamous parthenogenetic lineages must coexist with a ‘sperm donor’— e.g., males from a conspecific sexual lineage, conspecific hermaphrodites, or males from a closely related sexual species. Such sperm donors do not contribute genetically to the next generation. The parasitic nature of sperm‐dependent parthenogenesis raises numerous ecological and evolutionary questions. How do they arise? What factors help stabilize coexistence between the pseudogamous parthenogens and their sperm donors (i.e., ‘sexual hosts’)? Why do males waste sperm on the asexual females? Why does true parthenogenesis not evolve in pseudogamous lineages and free them from their dependency on sperm donors? Does pseudogamous parthenogenesis provide compensatory benefits that outweigh the constraints of sperm‐dependence? Herein, we consider some genetic, ecological, and geographical consequences of sperm‐dependent parthenogenesis in animals.
Science | 2010
Eveline C. Verhulst; Leo W. Beukeboom; Louis Jacobus Mgn Van De Zande
The Wasps and the Bees Sex development in bees and wasps depends on whether or not they develop from a haploid unfertilized egg (resulting in males) or diploid fertilized egg (resulting in females). Although these ploidy-level developmental processes are conserved among bees and wasps, the mechanisms that direct development down a male or female pathway differ significantly. By examining the sex-determining genes in the parasitoid wasp Nasonia, Verhulst et al. (p. 620) have shown that a maternal messenger RNA (mRNA) is necessary to initiate the female pathway. The mRNA operates in combination with conserved maternal and paternal genes to produce females, which explains why females are diploids. In unfertilized eggs, maternal provisioning of the gene transcript is too low to initiate the female pathway. Femaleness in a parasitoid wasp, unlike in bees, requires male and female input, explaining why diploids are female. All insects in the order Hymenoptera have haplodiploid sex determination, in which males emerge from haploid unfertilized eggs and females are diploid. Sex determination in the honeybee Apis mellifera is controlled by the complementary sex determination (csd) locus, but the mechanisms controlling sex determination in other Hymenoptera without csd are unknown. We identified the sex-determination system of the parasitic wasp Nasonia, which has no csd locus. Instead, maternal input of Nasonia vitripennis transformer (Nvtra) messenger RNA, in combination with specific zygotic Nvtra transcription, in which Nvtra autoregulates female-specific splicing, is essential for female development. Our data indicate that males develop as a result of maternal imprinting that prevents zygotic transcription of the maternally derived Nvtra allele in unfertilized eggs. Upon fertilization, zygotic Nvtra transcription is initiated, which autoregulates the female-specific transcript, leading to female development.
Current Opinion in Genetics & Development | 2010
Eveline C. Verhulst; Louis Jacobus Mgn Van De Zande; Leo W. Beukeboom
Insects exhibit a variety of sex determining mechanisms including male or female heterogamety and haplodiploidy. The primary signal that starts sex determination is processed by a cascade of genes ending with the conserved switch doublesex that controls sexual differentiation. Transformer is the doublesex splicing regulator and has been found in all examined insects, indicating its ancestral function as a sex-determining gene. Despite this conserved function, the variation in transformer nucleotide sequence, amino acid composition and protein structure can accommodate a multitude of upstream sex determining signals. Transformer regulation of doublesex and its taxonomic distribution indicate that the doublesex-transformer axis is conserved among all insects and that transformer is the key gene around which variation in sex determining mechanisms has evolved.
Genome Biology | 2014
Jeffrey G. Scott; Wesley C. Warren; Leo W. Beukeboom; Daniel Bopp; Andrew G. Clark; Sarah D. Giers; Monika Hediger; Andrew K. Jones; Shinji Kasai; Cheryl A. Leichter; Ming Li; Richard P. Meisel; Patrick Minx; Terence Murphy; David R. Nelson; William R. Reid; Frank D. Rinkevich; Hugh M. Robertson; Timothy B. Sackton; David B. Sattelle; Françoise Thibaud-Nissen; Chad Tomlinson; Louis Jacobus Mgn Van De Zande; Kimberly K. O. Walden; Richard Wilson; Nannan Liu
BackgroundAdult house flies, Musca domestica L., are mechanical vectors of more than 100 devastating diseases that have severe consequences for human and animal health. House fly larvae play a vital role as decomposers of animal wastes, and thus live in intimate association with many animal pathogens.ResultsWe have sequenced and analyzed the genome of the house fly using DNA from female flies. The sequenced genome is 691 Mb. Compared with Drosophila melanogaster, the genome contains a rich resource of shared and novel protein coding genes, a significantly higher amount of repetitive elements, and substantial increases in copy number and diversity of both the recognition and effector components of the immune system, consistent with life in a pathogen-rich environment. There are 146 P450 genes, plus 11 pseudogenes, in M. domestica, representing a significant increase relative to D. melanogaster and suggesting the presence of enhanced detoxification in house flies. Relative to D. melanogaster, M. domestica has also evolved an expanded repertoire of chemoreceptors and odorant binding proteins, many associated with gustation.ConclusionsThis represents the first genome sequence of an insect that lives in intimate association with abundant animal pathogens. The house fly genome provides a rich resource for enabling work on innovative methods of insect control, for understanding the mechanisms of insecticide resistance, genetic adaptation to high pathogen loads, and for exploring the basic biology of this important pest. The genome of this species will also serve as a close out-group to Drosophila in comparative genomic studies.
Journal of Evolutionary Biology | 2002
Maria Victoria Schneider; Leo W. Beukeboom; Gerard Driessen; Laurent Lapchin; Carlos Bernstein; J. J. M. van Alphen
Theory predicts that asexual reproduction has a competitive advantage over sexual reproduction because of the twofold cost of producing males. Few systems are suitable for directly testing this prediction. In the solitary parasitoid wasp Venturia canescens both arrhenotokously (sexual) and thelytokously (asexual) reproducing individuals occur sympatrically. We sampled 922 wasps from 22 localities along the coast of south‐eastern France. Thelytokous wasps were less abundant (23%) than arrhenotokous wasps and were almost always found in sympatry with arrhenotokous ones. An analysis of genetic relatedness using amplified fragment length polymorphism (AFLP) markers showed the existence of a widespread thelytokous clone. In addition, a few thelytokous individuals were found to be closely related to arrhenotokous ones and vice versa. These data suggest the occurrence of occasional gene flow between both reproductive modes and/or recurrent origin of thelytokous clones from coexisting arrhenotokous populations in the area. The results are discussed in the context of the paradox of sex.
The American Naturalist | 1993
John H. Werren; Leo W. Beukeboom
An assemblage of non-Mendelian sex ratio elements occurs in natural populations of the parasitoid wasp Nasonia vitripennis. These include Maternal Sex Ratio (MSR), a cytoplasmic element that causes nearly all-female families, and Paternal Sex Ratio (PSR), a B chromosome that causes all-male families. The PSR chromosome is transmitted via sperm but causes destruction of the paternal chromosomes (except itself) shortly after egg fertilization. Owing to haplodiploidy, this results in the conversion of diploid (female) eggs into haploid (male) eggs. Paternal Sex Ratio is an extreme example of a selfish genetic element. Theoretical analysis shows that subdivided population structures reduce PSR frequency. Paternal Sex Ratio cannot exist in subdivided populations (with temporary mating demes lasting one generation) when foundress number is less than three. The equilibrium frequency of PSR depends strongly on fertilization proportion (x). In populations producing the Hamiltonian evolutionarily stable strategy (x - [(N - 1)(2N - 1)/N(4N - 1)]), PSR never achieves frequencies over 3% for any deme size. In contrast, if the population produces a high fertilization proportion (i.e., greater than 90%, as produced by MSR), then PSR can achieve frequencies over 90% when deme size is three or larger. Results also show that PSR selects against the MSR cytoplasmic element in populations with small deme size, which results in polymorphic equilibria for both elements.
Heredity | 2011
Menno Schilthuizen; M.C.W.G. Giesbers; Leo W. Beukeboom
Haldanes Rule (HR), which states that ‘when in the offspring of two different animal races one sex is absent, rare, or sterile, that sex is the heterozygous (heterogametic) sex’, is one of the most general patterns in speciation biology. We review the literature of the past 15 years and find that among the ∼85 new studies, many consider taxa that traditionally have not been the focus for HR investigations. The new studies increased to nine, the number of ‘phylogenetically independent’ groups that comply with HR. They continue to support the dominance and faster-male theories as explanations for HR, although due to increased reliance on indirect data (from, for example, differential introgression of cytoplasmic versus chromosomal loci in natural hybrid zones) unambiguous novel results are rare. We further highlight how research on organisms with sex determination systems different from those traditionally considered may lead to more insight in the underlying causes of HR. In particular, haplodiploid organisms provide opportunities for testing specific predictions of the dominance and faster X chromosome theory, and we present new data that show that the faster-male component of HR is supported in hermaphrodites, suggesting that genes involved in male function may evolve faster than those expressed in the female function.
Molecular Ecology | 2008
Bernd K. Grillenberger; T. Koevoets; Maxwell N. Burton-Chellew; Edward M. Sykes; David M. Shuker; L. van de Zande; R. Bijlsma; Juergen Gadau; Leo W. Beukeboom
The parasitic wasp Nasonia vitripennis has been used extensively in sex allocation research. Although laboratory experiments have largely confirmed predictions of local mate competition (LMC) theory, the underlying assumptions of LMC models have hardly been explored in nature. We genotyped over 3500 individuals from two distant locations (in the Netherlands and Germany) at four polymorphic microsatellite loci to validate key assumptions of LMC theory, in terms of both the original models and more recent extensions to them. We estimated the number of females contributing eggs to patches of hosts and the clutch sizes as well as sex ratios produced by individual foundresses. In addition, we evaluated the level of inbreeding and population differentiation. Foundress numbers ranged from 1 to 7 (average 3.0 ± 0.46 SE). Foundresses were randomly distributed across the patches and across hosts within patches, with few parasitizing more than one patch. Of the hosts, 40% were parasitized by more than one foundress. Clutch sizes of individual foundresses (average 9.99 ± 0.51 SE) varied considerably between hosts. The time period during which offspring continued to emerge from a patch or host correlated strongly with foundress number, indicating that sequential rather than simultaneous parasitism is the more common. Genetic differentiation at the regional level between Germany and the Netherlands, as estimated by Slatkins private allele method (0.11) and Hedricks corrected G′LT (0.23), indicates significant substructuring between regions. The level of population inbreeding for the two localities (FIL = 0.168) fitted the expectation based on the average foundress number per patch.