Leon Bowen
Durham University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Leon Bowen.
AAPG Bulletin | 2013
Binh T. T. Nguyen; Stuart J. Jones; Neil R. Goulty; Alexander J. Middleton; Neil Grant; Alison Ferguson; Leon Bowen
Anomalously high porosities and permeabilities are commonly found in the fluvial channel sandstone facies of the Triassic Skagerrak Formation in the central North Sea at burial depths greater than 3200 m (10,499 ft), from which hydrocarbons are currently being produced. The aim of our study was to improve understanding of sandstone diagenesis in the Skagerrak Formation to help predict whether the facies with high porosity may be found at even greater depths. The Skagerrak sandstones comprise fine to medium-grained arkosic to lithic-arkosic arenites. We have used scanning electron microscopy, petrographic analysis, pressure history modeling, and core analysis to assess the timing of growth and origin of mineral cements, with generation, and the impact of high fluid pressure on reservoir quality. Our interpretation is that the anomalously high porosities in the Skagerrak sandstones were maintained by a history of overpressure generation and maintenance from the Late Triassic onward, in combination with early microquartz cementation and subsequent precipitation of robust chlorite grain coats. Increasing salinity of pore fluids during burial diagenesis led to pore-filling halite cements in sustained phreatic conditions. The halite pore-filling cements removed most of the remaining porosity and limited the precipitation of other diagenetic phases. Fluid flow associated with the migration of hydrocarbons during the Neogene is inferred to have dissolved the halite locally. Dissolution of halite cements in the channel sands has given rise to megapores and porosities of as much as 35% at current production depths.
Nature Communications | 2015
Karen L. Johnson; Graham Purvis; Elisa Lopez-Capel; Caroline L. Peacock; Neil D. Gray; Thomas Wagner; Christian März; Leon Bowen; Jesus J. Ojeda; Nina Finlay; Steve Robertson; Fred Worrall; Chris Greenwell
Minerals stabilize organic carbon (OC) in sediments, thereby directly affecting global climate at multiple scales, but how they do it is far from understood. Here we show that manganese oxide (Mn oxide) in a water treatment works filter bed traps dissolved OC as coatings build up in layers around clean sand grains at 3%w/wC. Using spectroscopic and thermogravimetric methods, we identify two main OC fractions. One is thermally refractory (>550 °C) and the other is thermally more labile (<550 °C). We postulate that the thermal stability of the trapped OC is due to carboxylate groups within it bonding to Mn oxide surfaces coupled with physical entrapment within the layers. We identify a significant difference in the nature of the surface-bound OC and bulk OC . We speculate that polymerization reactions may be occurring at depth within the layers. We also propose that these processes must be considered in future studies of OC in natural systems.
Particle and Fibre Toxicology | 2012
Claire J. Horwell; Benedict J Williamson; Ken Donaldson; Jennifer S. Le Blond; David E. Damby; Leon Bowen
BackgroundRespirable crystalline silica (RCS) continues to pose a risk to human health worldwide. Its variable toxicity depends on inherent characteristics and external factors which influence surface chemistry. Significant population exposure to RCS occurs during volcanic eruptions, where ashfall may cover hundreds of square km and exposure may last years. Occupational exposure also occurs through mining of volcanic deposits. The primary source of RCS from volcanoes is through collapse and fragmentation of lava domes within which cristobalite is mass produced. After 30 years of research, it is still not clear if volcanic ash is a chronic respiratory health hazard. Toxicological assays have shown that cristobalite-rich ash is less toxic than expected. We investigate the reasons for this by determining the physicochemical/structural characteristics which may modify the pathogenicity of volcanic RCS. Four theories are considered: 1) the reactivity of particle surfaces is reduced due to co-substitutions of Al and Na for Si in the cristobalite structure; 2) particles consist of aggregates of cristobalite and other phases, restricting the surface area of cristobalite available for reactions in the lung; 3) the cristobalite surface is occluded by an annealed rim; 4) dissolution of other volcanic particles affects the surfaces of RCS in the lung.MethodsThe composition of volcanic cristobalite crystals was quantified by electron microprobe and differences in composition assessed by Welch’s two sample t-test. Sections of dome-rock and ash particles were imaged by scanning and transmission electron microscopy, and elemental compositions of rims determined by energy dispersive X-ray spectroscopy.ResultsVolcanic cristobalite contains up to 4 wt. % combined Al2O3 and Na2O. Most cristobalite-bearing ash particles contain adhered materials such as feldspar and glass. No annealed rims were observed.ConclusionsThe composition of volcanic cristobalite particles gives insight into previously-unconsidered inherent characteristics of silica mineralogy which may affect toxicity. The structural features identified may also influence the hazard of other environmentally and occupationally produced silica dusts. Current exposure regulations do not take into account the characteristics that might render the silica surface less harmful. Further research would facilitate refinement of the existing simple, mass-based silica standard by taking into account composition, allowing higher standards to be set in industries where the silica surface is modified.
Applied Physics Letters | 2010
Budhika G. Mendis; Leon Bowen; Q. Z. Jiang
A cathodoluminescence-based, contactless method for extracting the bulk minority carrier diffusion length and reduced recombination velocity of an individual grain boundary is applied to vapor grown CdTe epitaxial films. The measured diffusion length was within the range of 0.4–0.6 μm and the grain boundary recombination velocity varied from 500 to 750 cm/s. The technique can be used to investigate the effect of grain boundaries on photovoltaic performance.
Applied Physics Letters | 2014
Ben Williams; Aidan A. Taylor; Budhika G. Mendis; Laurie J. Phillips; Leon Bowen; Jonathan D. Major; K. Durose
Radial p-n junction nanowire (NW) solar cells with high densities of CdTe NWs coated with indium tin oxide (ITO)/ZnO/CdS triple shells were grown with excellent heterointerfaces. The optical reflectance of the devices was lower than for equivalent planar films by a factor of 100. The best efficiency for the NW solar cells was η = 2.49%, with current transport being dominated by recombination, and the conversion efficiencies being limited by a back contact barrier (ϕB = 0.52 eV) and low shunt resistances (RSH < 500 Ω·cm2).
Journal of Applied Physics | 2015
Mark K. Massey; Apostolos Kotsialos; F. Qaiser; Dagou A. Zeze; Christopher Pearson; D. Volpati; Leon Bowen; Michael C. Petty
This paper explores the use of single-walled carbon nanotube (SWCNT)/poly(butyl methacrylate) composites as a material for use in unconventional computing. The mechanical and electrical properties of the materials are investigated. The resulting data reveal a correlation between the SWCNT concentration/viscosity/conductivity and the computational capability of the composite. The viscosity increases significantly with the addition of SWCNTs to the polymer, mechanically reinforcing the host material and changing the electrical properties of the composite. The electrical conduction is found to depend strongly on the nanotube concentration; Poole-Frenkel conduction appears to dominate the conductivity at very low concentrations (0.11% by weight). The viscosity and conductivity both show a threshold point around 1% SWCNT concentration; this value is shown to be related to the computational performance of the material. A simple optimization of threshold logic gates shows that satisfactory computation is only achieved above a SWCNT concentration of 1%. In addition, there is some evidence that further above this threshold the computational efficiency begins to decrease.
Experimental Eye Research | 2014
Weiju Wu; Frederique M.D. Tholozan; Martin W. Goldberg; Leon Bowen; Jun Jie Wu; Roy A. Quinlan
Fibroblast growth factors play a key role in regulating lens epithelial cell proliferation and differentiation via an anteroposterior gradient that exists between the aqueous and vitreous humours. FGF-2 is the most important for lens epithelial cell proliferation and differentiation. It has been proposed that the presentation of FGF-2 to the lens epithelial cells involves the lens capsule as a source of matrix-bound FGF-2. Here we used immunogold labelling to measure the matrix-bound FGF-2 gradient on the inner surface of the lens capsule in flat-mounted preparations to visualize the FGF-2 available to lens epithelial cells. We also correlated FGF-2 levels with levels of its matrix-binding partner perlecan, a heparan sulphate proteoglycan (HSPG) and found the levels of both to be highest at the lens equator. These also coincided with increased levels of phosphorylated extracellular signal-regulated kinase 1 and 2 (pERK1/2) in lens epithelial cells that localised to condensed chromosomes of epithelial cells that were Ki-67 positive. The gradient of matrix-bound FGF-2 (anterior pole: 3.7 ± 1.3 particles/μm2; equator: 8.2 ± 1.9 particles/μm2; posterior pole: 4 ± 0.9 particles/μm2) and perlecan (anterior pole: 2.1 ± 0.4 particles/μm2; equator: 5 ± 2 particles/μm2; posterior pole: 1.9 ± 0.7 particles/μm2) available at the inner lens capsule surface was measured for the bovine lens. These data support the anteroposterior gradient hypothesis and provide the first measurement of the gradient for an important morphogen and its HSPG partner, perlecan, at the epithelial cell-lens capsule interface.
Applied Physics Letters | 2013
Christopher Pearson; Leon Bowen; Myung Won Lee; Alison L. Fisher; Katherine E. Linton; Martin R. Bryce; Michael C. Petty
We report on the mechanism of operation of organic thin film resistive memory architectures based on an ambipolar compound consisting of oxadiazole, carbazole, and fluorene units. Cross-sections of the devices have been imaged by electron microscopy both before and after applying a voltage. The micrographs reveal the growth of filaments, with diameters of 50 nm–100 nm, on the metal cathode. We suggest that these are formed by the drift of aluminium ions from the anode and are responsible for the observed switching and negative differential resistance phenomena in the memory devices.
Nature Communications | 2016
Jonathan D. Major; M.K. Al Turkestani; Leon Bowen; M. Brossard; Chunyong Li; Pavlos G. Lagoudakis; Stephen J. Pennycook; Laurie J. Phillips; Robert E. Treharne; K. Durose
CdTe thin-film solar cells are now the main industrially established alternative to silicon-based photovoltaics. These cells remain reliant on the so-called chloride activation step in order to achieve high conversion efficiencies. Here, by comparison of effective and ineffective chloride treatments, we show the main role of the chloride process to be the modification of grain boundaries through chlorine accumulation, which leads an increase in the carrier lifetime. It is also demonstrated that while improvements in fill factor and short circuit current may be achieved through use of the ineffective chlorides, or indeed simple air annealing, voltage improvement is linked directly to chlorine incorporation at the grain boundaries. This suggests that focus on improved or more controlled grain boundary treatments may provide a route to achieving higher cell voltages and thus efficiencies.
Journal of Applied Physics | 2012
Nor F. Za’bah; Kelvin S. K. Kwa; Leon Bowen; Budhika G. Mendis; Anthony O’Neill
A method for fabricating single crystal silicon nanowires is presented using top-down optical lithography and anisotropic etching. Wire diameters as small as 10 nm are demonstrated using silicon on insulator substrates. Structural characterization confirms that wires are straight, have a triangular cross section and are without breakages over lengths of tens of microns. Electrical characterization indicates bulk like mobility values, not strongly influenced by surface scattering or quantum confinement. Processing is compatible with conventional silicon technology having much larger critical dimensions. Integrating such nanowires with a mature CMOS technology offers an inexpensive route to their exploitation as sensors.