Leon D. Kluskens
University of Groningen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Leon D. Kluskens.
Journal of Biological Chemistry | 2004
Anneke Kuipers; Esther de Boef; Rick Rink; Susan Fekken; Leon D. Kluskens; Arnold J. M. Driessen; Kees Leenhouts; Oscar P. Kuipers; Gert N. Moll
Lantibiotics are lanthionine-containing peptide antibiotics. Nisin, encoded by nisA, is a pentacyclic lantibiotic produced by some Lactococcus lactis strains. Its thioether rings are posttranslationally introduced by a membrane-bound enzyme complex. This complex is composed of three enzymes: NisB, which dehydrates serines and threonines; NisC, which couples these dehydrated residues to cysteines, thus forming thioether rings; and the transporter NisT. We followed the activity of various combinations of the nisin enzymes by measuring export of secreted peptides using antibodies against the leader peptide and mass spectroscopy for detection. L. lactis expressing the nisABTC genes efficiently produced fully posttranslationally modified prenisin. Strikingly, L. lactis expressing the nisBT genes could produce dehydrated prenisin without thioether rings and a dehydrated form of a non-lantibiotic peptide. In the absence of the biosynthetic NisBC enzymes, the NisT transporter was capable of excreting unmodified prenisin and fusions of the leader peptide with non-lantibiotic peptides. Our data show that NisT specifies a broad spectrum (poly)peptide transporter that can function either in conjunction with or independently from the biosynthetic genes. NisT secretes both unmodified and partially or fully posttranslationally modified forms of prenisin and non-lantibiotic peptides. These results open the way for efficient production of a wide range of peptides with increased stability or novel bioactivities.
Journal of Pharmacology and Experimental Therapeutics | 2009
Leon D. Kluskens; S. Adriaan Nelemans; Rick Rink; Louwe de Vries; Anita Meter-Arkema; Yong Wang; Thomas Walther; Anneke Kuipers; Gert N. Moll; M Haas
The in vivo efficacy of many therapeutic peptides is hampered by their rapid proteolytic degradation. Cyclization of these therapeutic peptides is an excellent way to render them more resistant against breakdown. Here, we describe the enzymatic introduction of a thioether ring in angiotensin [Ang-(1-7)], a heptapeptide that plays a pivotal role in the renin-angiotensin system and possesses important therapeutic activities. The lactic acid bacterium Lactococcus lactis, equipped with the plasmid-based nisin modification machinery, was used to produce thioether-bridged Ang-(1-7). The resulting cyclized Ang-(1-7) is fully resistant against purified angiotensin-converting enzyme, has significantly increased stability in homogenates of different organs and in plasma derived from pig, and displays a strongly (34-fold) enhanced survival in Sprague-Dawley (SD) rats in vivo. With respect to functional activity, cyclized Ang-(1-7) induces relaxation of precontracted SD rat aorta rings in vitro. The magnitude of this effect is 2-fold larger than that obtained for natural Ang-(1-7). The Ang-(1-7) receptor antagonist d-Pro7-Ang-(1-7), which completely inhibits the activity of natural Ang-(1-7), also abolishes the vasodilation by cyclized Ang-(1-7), providing evidence that cyclized Ang-(1-7) also interacts with the Ang-(1-7) receptor. Taken together, applying a highly innovative enzymatic peptide stabilization method, we generated a stable Ang-(1-7) analog with strongly enhanced therapeutic potential.
Applied and Environmental Microbiology | 2007
Rick Rink; Jenny Wierenga; Anneke Kuipers; Leon D. Kluskens; Arnold J. M. Driessen; Oscar P. Kuipers; Gert N. Moll
ABSTRACT Nisin A is a pentacyclic antibiotic peptide produced by various Lactococcus lactis strains. Nisin displays four different activities: (i) it autoinduces its own synthesis; (ii) it inhibits the growth of target bacteria by membrane pore formation; (iii) it inhibits bacterial growth by interfering with cell wall synthesis; and, in addition, (iv) it inhibits the outgrowth of spores. Here we investigate the structural requirements and relevance of the N-terminal thioether rings of nisin by randomization of the ring A and B positions. The data demonstrate that: (i) mutation of ring A results in variants with enhanced activity and a modulated spectrum of target cells; (ii) for the cell growth-inhibiting activity of nisin, ring A is rather promiscuous with respect to its amino acid composition, whereas the bulky amino acid residues in ring B abolish antimicrobial activity; (iii) C-terminally truncated nisin A mutants lacking rings D and E retain significant antimicrobial activity but are unable to permeabilize the target membrane; (iv) the dehydroalanine in ring A is not essential for the inhibition of the outgrowth of Bacillus cells; (v) some ring A mutants have significant antimicrobial activities but have decreased autoinducing activities; (vi) the opening of ring B eliminates antimicrobial activity while retaining autoinducing activity; and (vii) some ring A mutants escape the nisin immune system(s) and are toxic to the nisin-producing strain NZ9700. These data demonstrate that the various activities of nisin can be engineered independently and provide a basis for the design and synthesis of tailor-made analogs with desired activities.
Journal of Pharmacology and Experimental Therapeutics | 2008
Leon D. Kluskens; Ad Nelemans; Rick Rink; Louwe de Vries; Anita Meter-Arkema; Yong Wang; Thomas Walther; Anneke Kuipers; Gert N. Moll; M Haas
The in vivo efficacy of many therapeutic peptides is hampered by their rapid proteolytic degradation. Cyclization of these therapeutic peptides is an excellent way to render them more resistant against breakdown. Here, we describe the enzymatic introduction of a thioether ring in angiotensin [Ang-(1-7)], a heptapeptide that plays a pivotal role in the renin-angiotensin system and possesses important therapeutic activities. The lactic acid bacterium Lactococcus lactis, equipped with the plasmid-based nisin modification machinery, was used to produce thioether-bridged Ang-(1-7). The resulting cyclized Ang-(1-7) is fully resistant against purified angiotensin-converting enzyme, has significantly increased stability in homogenates of different organs and in plasma derived from pig, and displays a strongly (34-fold) enhanced survival in Sprague-Dawley (SD) rats in vivo. With respect to functional activity, cyclized Ang-(1-7) induces relaxation of precontracted SD rat aorta rings in vitro. The magnitude of this effect is 2-fold larger than that obtained for natural Ang-(1-7). The Ang-(1-7) receptor antagonist d-Pro7-Ang-(1-7), which completely inhibits the activity of natural Ang-(1-7), also abolishes the vasodilation by cyclized Ang-(1-7), providing evidence that cyclized Ang-(1-7) also interacts with the Ang-(1-7) receptor. Taken together, applying a highly innovative enzymatic peptide stabilization method, we generated a stable Ang-(1-7) analog with strongly enhanced therapeutic potential.
Applied and Environmental Microbiology | 2007
Rick Rink; Jenny Wierenga; Anneke Kuipers; Leon D. Kluskens; Arnold J. M. Driessen; Oscar P. Kuipers; Gert N. Moll
ABSTRACT Nisin is a pentacyclic peptide antibiotic produced by some Lactococcus lactis strains. Nisin contains dehydroresidues and thioether rings that are posttranslationally introduced by a membrane-associated enzyme complex, composed of a serine and threonine dehydratase NisB and the cyclase NisC. In addition, the transporter NisT is necessary for export of the modified peptide. We studied the potential of L. lactis expressing NisB and NisT to produce peptides whose serines and threonines are dehydrated. L. lactis containing the nisBT genes and a plasmid coding for a specific leader peptide fusion construct efficiently produced peptides with a series of non-naturally occurring multiple flanking dehydrobutyrines. We demonstrated NisB-mediated dehydration of serines and threonines in a C-terminal nisin(1-14) extension of nisin, which implies that also residues more distant from the leader peptide than those occurring in prenisin or any other lantibiotic can be modified. Furthermore, the feasibility and efficiency of generating a library of peptides containing dehydroresidues were demonstrated. In view of the particular shape and reactivity of dehydroamino acids, such a library provides a novel source for screening for peptides with desired biological and physicochemical properties.
Applied and Environmental Microbiology | 2011
Annechien Plat; Leon D. Kluskens; Anneke Kuipers; Rick Rink; Gert N. Moll
ABSTRACT Nisin A is a pentacyclic peptide antibiotic produced by Lactococcus lactis. The leader peptide of prenisin keeps nisin inactive and has a role in inducing NisB- and NisC-catalyzed modifications of the propeptide and NisT-mediated export. The highly specific NisP cleaves off the leader peptide from fully modified and exported prenisin. We present here a detailed mutagenesis analysis of the nisin leader peptide. For alternative cleavage, we successfully introduced a putative NisP autocleavage site and sites for thrombin, enterokinase, Glu-C, and factor Xa in the C-terminal part of the leader peptide. Replacing residue F-18 with Trp or Thr strongly reduced production. On the other hand, D-19A, F-18H, F-18M, L-16D, L-16K, and L-16A enhanced production. Substitutions within and outside the FNLD box enhanced or reduced the transport efficiency. None of the above substitutions nor even an internal 6His tag from positions −13 to −8 had any effect on the capacity of the leader peptide to induce NisB and NisC modifications. Therefore, these data demonstrate a large mutational freedom. However, simultaneous replacement of the FNLD amino acids by four alanines strongly reduced export and even led to a complete loss of the capacity to induce modifications. Reducing the leader peptide to MSTKDFNLDLR led to 3- or 4-fold dehydration. Taken together, the FNLD box is crucial for inducing posttranslational modifications.
Applied and Environmental Microbiology | 2006
Anneke Kuipers; Jenny Wierenga; Rick Rink; Leon D. Kluskens; Arnold J. M. Driessen; Oscar P. Kuipers; Gert N. Moll
ABSTRACT Nisin is a lanthionine-containing antimicrobial peptide produced by Lactococcus lactis. Its (methyl)lanthionines are introduced by two posttranslational enzymatic steps involving the dehydratase NisB, which dehydrates serine and threonine residues, and the cyclase NisC, which couples these dehydrated residues to cysteines, yielding thioether-bridged amino acids called lanthionines. The prenisin is subsequently exported by the ABC transporter NisT and extracellularly processed by the peptidase NisP. L. lactis expressing the nisBTC genes can modify and secrete a wide range of nonlantibiotic peptides. Here we demonstrate that in the absence of NisT and NisC, the Sec pathway of L. lactis can be exploited for the secretion of dehydrated variants of therapeutic peptides. Furthermore, posttranslational modifications by NisB and NisC still occur even when the nisin leader is preceded by a Sec signal peptide or a Tat signal peptide 27 or 44 amino acids long, respectively. However, transport of fully modified prenisin via the Sec pathway is impaired. The extent of NisB-mediated dehydration could be improved by raising the intracellular concentration NisB or by modulating the export efficiency through altering the signal sequence. These data demonstrate that besides the traditional lantibiotic transporter NisT, the Sec pathway with an established broad substrate range can be utilized for the improved export of lantibiotic enzyme-modified (poly)peptides.
Applied and Environmental Microbiology | 2008
Anneke Kuipers; Jenny Meijer-Wierenga; Rick Rink; Leon D. Kluskens; Gert N. Moll
ABSTRACT The thioether rings in the lantibiotics lacticin 3147 and nisin are posttranslationally introduced by dehydration of serines and threonines, followed by coupling of these dehydrated residues to cysteines. The prepeptides of the two-component lantibiotic lacticin 3147, LtnA1 and LtnA2, are dehydrated and cyclized by two corresponding bifunctional enzymes, LtnM1 and LtnM2, and are subsequently processed and exported via one bifunctional enzyme, LtnT. In the nisin synthetase complex, the enzymes NisB, NisC, NisT, and NisP dehydrate, cyclize, export, and process prenisin, respectively. Here, we demonstrate that the combination of LtnM2 and LtnT can modify, process, and transport peptides entirely different from LtnA2 and that LtnT can process and transport unmodified LtnA2 and unrelated peptides. Furthermore, we demonstrate a higher extent of NisB-mediated dehydration in the absence of thioether rings. Thioether rings apparently inhibited dehydration, which implies alternating actions of NisB and NisC. Furthermore, certain (but not all) NisC-cyclized peptides were exported with higher efficiency as a result of their conformation. Taken together, these data provide further insight into the applicability of Lactococcus lactis strains containing lantibiotic enzymes for the design and production of modified peptides.
Applied and Environmental Microbiology | 2005
Carolin Gödde; Kerstin Sahm; Stan J. J. Brouns; Leon D. Kluskens; John van der Oost; Willem M. de Vos; Garabed Antranikian
ABSTRACT A gene encoding a subtilisin-like protease, designated islandisin, from the extremely thermophilic bacterium Fervidobacterium islandicum (DSMZ 5733) was cloned and actively expressed in Escherichia coli. The gene was identified by PCR using degenerated primers based on conserved regions around two of the three catalytic residues (Asp, His, and Ser) of subtilisin-like serine protease-encoding genes. Using inverse PCR regions flanking the catalytic residues, the gene could be cloned. Sequencing revealed an open reading frame of 2,106 bp. The deduced amino acid sequence indicated that the enzyme is synthesized as a proenzyme with a putative signal sequence of 33 amino acids (aa) in length. The mature protein contains the three catalytic residues (Asp177, His215, and Ser391) and has a length of 668 aa. Amino acid sequence comparison and phylogenetic analysis indicated that this enzyme could be classified as a subtilisin-like serine protease in the subgroup of thermitase. The whole gene was amplified by PCR, ligated into pET-15b, and successfully expressed in E. coli BL21(DE3)pLysS. The recombinant islandisin was purified by heat denaturation, followed by hydroxyapatite chromatography. The enzyme is active at a broad range of temperatures (60 to 80°C) and pHs (pH 6 to 8.5) and shows optimal proteolytic activity at 80°C and pH 8.0. Islandisin is resistant to a number of detergents and solvents and shows high thermostability over a long period of time (up to 32 h) at 80°C with a half-life of 4 h at 90°C and 1.5 h at 100°C.
Applied and Environmental Microbiology | 2008
Jacek Lubelski; Wout Overkamp; Leon D. Kluskens; Gert N. Moll; Oscar P. Kuipers
ABSTRACT Since the recent discovery that the nisin modification and transport machinery can be used to produce and modify peptides unrelated to nisin, specific questions arose concerning the specificity of the modification enzymes involved and the limits of their promiscuity with respect to the dehydration and cyclization processes. The nisin leader peptide has been postulated to fulfill a recognition and binding function required for these modifications. Here, we investigated whether the relative positions of the modifiable residues in the nisin prepeptide, with respect to the leader peptide, could influence the efficiency of their modification. We conducted a systematic study on the insertion of one to four alanines in front of either ring A or ring D to change the “reading frame” of modifiable residues, resulting in altered distance and topology of the modifiable residues relative to the leader. The insertion of N-terminal and hinge-located Ala residues had only a modest influence on the modification efficiency, demonstrating that the “phasing” of these residues relative to the leader peptide is not a critical factor in determining modification. However, in all cases, but especially with the N-terminal insertions, the antimicrobial activities of the fully modified nisin species were decreased.