Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leon French is active.

Publication


Featured researches published by Leon French.


PLOS Computational Biology | 2011

Relationships between Gene Expression and Brain Wiring in the Adult Rodent Brain

Leon French; Paul Pavlidis

We studied the global relationship between gene expression and neuroanatomical connectivity in the adult rodent brain. We utilized a large data set of the rat brain “connectome” from the Brain Architecture Management System (942 brain regions and over 5000 connections) and used statistical approaches to relate the data to the gene expression signatures of 17,530 genes in 142 anatomical regions from the Allen Brain Atlas. Our analysis shows that adult gene expression signatures have a statistically significant relationship to connectivity. In particular, brain regions that have similar expression profiles tend to have similar connectivity profiles, and this effect is not entirely attributable to spatial correlations. In addition, brain regions which are connected have more similar expression patterns. Using a simple optimization approach, we identified a set of genes most correlated with neuroanatomical connectivity, and find that this set is enriched for genes involved in neuronal development and axon guidance. A number of the genes have been implicated in neurodevelopmental disorders such as autistic spectrum disorder. Our results have the potential to shed light on the role of gene expression patterns in influencing neuronal activity and connectivity, with potential applications to our understanding of brain disorders. Supplementary data are available at http://www.chibi.ubc.ca/ABAMS.


Environmental Health Perspectives | 2014

Prenatal exposure to maternal cigarette smoking and DNA methylation: epigenome-wide association in a discovery sample of adolescents and replication in an independent cohort at birth through 17 years of age

Ken W.K. Lee; Rebecca C Richmond; Pingzhao Hu; Leon French; Jean Shin; Celine Bourdon; Eva Reischl; Melanie Waldenberger; Sonja Zeilinger; Tom R. Gaunt; Wendy L. McArdle; Susan M. Ring; Geoff Woodward; Luigi Bouchard; Daniel Gaudet; George Davey Smith; Caroline L Relton; Tomáš Paus; Zdenka Pausova

Background: Prenatal exposure to maternal cigarette smoking (prenatal smoke exposure) had been associated with altered DNA methylation (DNAm) at birth. Objective: We examined whether such alterations are present from birth through adolescence. Methods: We used the Infinium HumanMethylation450K BeadChip to search across 473,395 CpGs for differential DNAm associated with prenatal smoke exposure during adolescence in a discovery cohort (n = 132) and at birth, during childhood, and during adolescence in a replication cohort (n = 447). Results: In the discovery cohort, we found five CpGs in MYO1G (top-ranking CpG: cg12803068, p = 3.3 × 10–11) and CNTNAP2 (cg25949550, p = 4.0 × 10–9) to be differentially methylated between exposed and nonexposed individuals during adolescence. The CpGs in MYO1G and CNTNAP2 were associated, respectively, with higher and lower DNAm in exposed versus nonexposed adolescents. The same CpGs were differentially methylated at birth, during childhood, and during adolescence in the replication cohort. In both cohorts and at all developmental time points, the differential DNAm was in the same direction and of a similar magnitude, and was not altered appreciably by adjustment for current smoking by the participants or their parents. In addition, four of the five EWAS (epigenome-wide association study)–significant CpGs in the adolescent discovery cohort were also among the top sites of differential methylation in a previous birth cohort, and differential methylation of CpGs in CYP1A1, AHRR, and GFI1 observed in that study was also evident in our discovery cohort. Conclusions: Our findings suggest that modifications of DNAm associated with prenatal maternal smoking may persist in exposed offspring for many years—at least until adolescence. Citation: Lee KW, Richmond R, Hu P, French L, Shin J, Bourdon C, Reischl E, Waldenberger M, Zeilinger S, Gaunt T, McArdle W, Ring S, Woodward G, Bouchard L, Gaudet D, Davey Smith G, Relton C, Paus T, Pausova Z. 2015. Prenatal exposure to maternal cigarette smoking and DNA methylation: epigenome-wide association in a discovery sample of adolescents and replication in an independent cohort at birth through 17 years of age. Environ Health Perspect 123:193–199; http://dx.doi.org/10.1289/ehp.1408614


JAMA Psychiatry | 2015

Early Cannabis Use, Polygenic Risk Score for Schizophrenia and Brain Maturation in Adolescence

Leon French; Courtney Gray; Gabriel Leonard; Michel Perron; G. Bruce Pike; Louis Richer; Jean R. Séguin; Suzanne Veillette; C. John Evans; Eric Artiges; Tobias Banaschewski; Arun W L Bokde; Uli Bromberg; Ruediger Bruehl; Christian Büchel; Anna Cattrell; Patricia J. Conrod; Herta Flor; Vincent Frouin; Jürgen Gallinat; Hugh Garavan; Penny A. Gowland; Andreas Heinz; Hervé Lemaitre; Jean-Luc Martinot; Frauke Nees; Dimitri Papadopoulos Orfanos; Melissa M. Pangelinan; Luise Poustka; Marcella Rietschel

IMPORTANCE Cannabis use during adolescence is known to increase the risk for schizophrenia in men. Sex differences in the dynamics of brain maturation during adolescence may be of particular importance with regard to vulnerability of the male brain to cannabis exposure. OBJECTIVE To evaluate whether the association between cannabis use and cortical maturation in adolescents is moderated by a polygenic risk score for schizophrenia. DESIGN, SETTING, AND PARTICIPANTS Observation of 3 population-based samples included initial analysis in 1024 adolescents of both sexes from the Canadian Saguenay Youth Study (SYS) and follow-up in 426 adolescents of both sexes from the IMAGEN Study from 8 European cities and 504 male youth from the Avon Longitudinal Study of Parents and Children (ALSPAC) based in England. A total of 1577 participants (aged 12-21 years; 899 [57.0%] male) had (1) information about cannabis use; (2) imaging studies of the brain; and (3) a polygenic risk score for schizophrenia across 108 genetic loci identified by the Psychiatric Genomics Consortium. Data analysis was performed from March 1 through December 31, 2014. MAIN OUTCOMES AND MEASURES Cortical thickness derived from T1-weighted magnetic resonance images. Linear regression tests were used to assess the relationships between cannabis use, cortical thickness, and risk score. RESULTS Across the 3 samples of 1574 participants, a negative association was observed between cannabis use in early adolescence and cortical thickness in male participants with a high polygenic risk score. This observation was not the case for low-risk male participants or for the low- or high-risk female participants. Thus, in SYS male participants, cannabis use interacted with risk score vis-à-vis cortical thickness (P = .009); higher scores were associated with lower thickness only in males who used cannabis. Similarly, in the IMAGEN male participants, cannabis use interacted with increased risk score vis-à-vis a change in decreasing cortical thickness from 14.5 to 18.5 years of age (t137 = -2.36; P = .02). Finally, in the ALSPAC high-risk group of male participants, those who used cannabis most frequently (≥61 occasions) had lower cortical thickness than those who never used cannabis (difference in cortical thickness, 0.07 [95% CI, 0.01-0.12]; P = .02) and those with light use (<5 occasions) (difference in cortical thickness, 0.11 [95% CI, 0.03-0.18]; P = .004). CONCLUSIONS AND RELEVANCE Cannabis use in early adolescence moderates the association between the genetic risk for schizophrenia and cortical maturation among male individuals. This finding implicates processes underlying cortical maturation in mediating the link between cannabis use and liability to schizophrenia.


Neuroscience | 2014

WHITE MATTER AS A TRANSPORT SYSTEM

Tomáš Paus; M. Pesaresi; Leon French

There are two ways to picture white matter: as a grid of electrical wires or a network of roads. The first metaphor captures the classical function of an axon as conductor of action potentials (and information) from one brain region to another. The second one points to the important role of axons in a bi-directional transport of biological molecules and organelles between the cell body and synapse. Given the wide variety of such cargoes, a well-functioning axonal transport is critical for a number of processes, including neurotransmission, metabolism and viability of neurons. This selective review will emphasize the need for considering axonal transport when interpreting functional consequences of inter-individual variations in the structural properties of white matter. We start by describing the space occupied by white matter and techniques used in vivo for its characterization. We then provide examples of key features of maturation and aging of white matter, as well as some of the common abnormalities observed in neurodevelopmental and neurodegenerative disorders. Next, we review work that motivated our focus on axonal diameter, and explain the relationships between transport and cytoskeleton within the axon. We will conclude by describing molecular machinery of axonal transport and genes that may contribute to inter-individual variations in axonal diameter and axonal transport.


Frontiers in Neuroinformatics | 2011

Large-Scale Analysis of Gene Expression and Connectivity in the Rodent Brain: Insights through Data Integration

Leon French; Powell Patrick Cheng Tan; Paul Pavlidis

Recent research in C. elegans and the rodent has identified correlations between gene expression and connectivity. Here we extend this type of approach to examine complex patterns of gene expression in the rodent brain in the context of regional brain connectivity and differences in cellular populations. Using multiple large-scale data sets obtained from public sources, we identified two novel patterns of mouse brain gene expression showing a strong degree of anti-correlation, and relate this to multiple data modalities including macroscale connectivity. We found that these signatures are associated with differences in expression of neuronal and oligodendrocyte markers, suggesting they reflect regional differences in cellular populations. We also find that the expression level of these genes is correlated with connectivity degree, with regions expressing the neuron-enriched pattern having more incoming and outgoing connections with other regions. Our results exemplify what is possible when increasingly detailed large-scale cell- and gene-level data sets are integrated with connectivity data.


Brain Structure & Function | 2016

Transcriptomic-anatomic analysis of the mouse habenula uncovers a high molecular heterogeneity among neurons in the lateral complex, while gene expression in the medial complex largely obeys subnuclear boundaries

Franziska Wagner; Leon French; Rüdiger W. Veh

The mammalian habenula with its medial and lateral complexes has gained much interest in recent years, while knowledge on the detailed biological functions of these nuclei is still scarce. Novel strategies to differentiate and identify habenular cell types are required. Such attempts have largely failed, most likely due to the lack of appropriate molecular markers. One important tool to approach this dilemma is available in form of the Allen Brain Atlas (ABA), which provides detailed expression patterns of many genes in the mouse brain. In the present report, ABA tools in combination with visual inspection of ISH images were used to detect transcripts, which are strongly expressed in medial (MHb) and lateral (LHb) habenular complexes. Against our expectations, most transcripts were differentially distributed throughout the LHb, disregarding boundaries of subnuclear areas. Nine distinct distribution patterns were recognized. Yet, several transcripts could not be attributed to one of these, suggesting a high diversity of neuron types in the LHb. In the MHb, in contrast, many transcripts tended to obey subnuclear boundaries. The differential distribution of others like Adcyap1, Chrna3, or Trp53i11 suggests the presence of a novel subfield adjacent to the region of the MHbVm, which now is termed intermediate field of the ventral MHb. In addition, the localizations of Amigo2, Adcyap1, and a couple of other transcripts suggest a lateral extension of the MHb, which is here, termed HbX area. Apparently, this area is composed of intermingled MHb and LHb neurons and may allow functional interaction between the both habenular complexes.


NeuroImage | 2015

Axon diameter and axonal transport: In vivo and in vitro effects of androgens.

M. Pesaresi; R. Soon-Shiong; Leon French; D. R. Kaplan; F. D. Miller; Tomáš Paus

Testosterone is a sex hormone involved in brain maturation via multiple molecular mechanisms. Previous human studies described age-related changes in the overall volume and structural properties of white matter during male puberty. Based on this work, we have proposed that testosterone may induce a radial growth of the axon and, possibly, modulate axonal transport. In order to determine whether this is the case we have used two different experimental approaches. With electron microscopy, we have evaluated sex differences in the structural properties of axons in the corpus callosum (splenium) of young rats, and tested consequences of castration carried out after weaning. Then we examined in vitro the effect of the non-aromatizable androgen Mibolerone on the structure and bidirectional transport of wheat-germ agglutinin vesicles in the axons of cultured sympathetic neurons. With electron microscopy, we found robust sex differences in axonal diameter (males>females) and g ratio (males>females). Removal of endogenous testosterone by castration was associated with lower axon diameter and lower g ratio in castrated (vs. intact) males. In vitro, Mibolerone influenced the axonal transport in a time- and dose-dependent manner, and increased the axon caliber as compared with vehicle-treated neurons. These findings are consistent with the role of testosterone in shaping the axon by regulating its radial growth, as predicted by the initial human studies.


Frontiers in Neuroscience | 2015

A FreeSurfer view of the cortical transcriptome generated from the Allen Human Brain Atlas.

Leon French; Tomáš Paus

The Allen Human Brain Atlas provides an anatomically comprehensive view of gene expression in the brain (Hawrylycz et al., 2012). The complete transcriptome dataset consists of 58,692 measurements of gene expression in 3702 brain samples obtained from 6 individuals. The resulting product, over 200 million gene expression values, can be overwhelming for neuroscientists seeking to use the data. For example, data for a single gene consist of three interlinked files when downloaded from the Allen Institute website. The local expression values are associated with X, Y, and Z coordinates in the MNI152 atlas (Mazziotta et al., 2001), thus allowing one to map these values to other brain atlases. To reduce the complexity of the Allen data, we have summarized the data into the Desikan–Killiany cortical atlas built into the FreeSurfer software for automatic labeling of regions of interest (Desikan et al., 2006). FreeSurfer allows one to segment magnetic resonance images (MRIs) into 68 cortical regions and to estimate their cortical thickness, surface area and volume (http://surfer.nmr.mgh.harvard.edu/). These cortical measurements are stable and agree with past histological studies (Fischl and Dale, 2000; Han et al., 2006; Scholtens et al., 2015). FreeSurfer has been used widely, with over 600 reports covering a broad range of topics that include brain development, aging and a variety of brain disorders (PubMed, May 2015). Adding the perspective of gene expression could facilitate interpretation of these reports. For example, we recently found that the magnitude of group differences in cortical thickness between cannabis users and non-users correlates with regional variations in expression levels of cannabis receptor 1 (CNR1) (French et al., 2015).


Frontiers in Neuroscience | 2013

Neuron-Enriched Gene Expression Patterns are Regionally Anti-Correlated with Oligodendrocyte-Enriched Patterns in the Adult Mouse and Human Brain

Powell Patrick Cheng Tan; Leon French; Paul Pavlidis

An important goal in neuroscience is to understand gene expression patterns in the brain. The recent availability of comprehensive and detailed expression atlases for mouse and human creates opportunities to discover global patterns and perform cross-species comparisons. Recently we reported that the major source of variation in gene transcript expression in the adult normal mouse brain can be parsimoniously explained as reflecting regional variation in glia to neuron ratios, and is correlated with degree of connectivity and location in the brain along the anterior-posterior axis. Here we extend this investigation to two gene expression assays of adult normal human brains that consisted of over 300 brain region samples, and perform comparative analyses of brain-wide expression patterns to the mouse. We performed principal components analysis (PCA) on the regional gene expression of the adult human brain to identify the expression pattern that has the largest variance. As in the mouse, we observed that the first principal component is composed of two anti-correlated patterns enriched in oligodendrocyte and neuron markers respectively. However, we also observed interesting discordant patterns between the two species. For example, a few mouse neuron markers show expression patterns that are more correlated with the human oligodendrocyte-enriched pattern and vice-versa. In conclusion, our work provides insights into human brain function and evolution by probing global relationships between regional cell type marker expression patterns in the human and mouse brain.


Frontiers in Neuroinformatics | 2009

Automated recognition of brain region mentions in neuroscience literature

Leon French; Suzanne Lane; Lydia Xu; Paul Pavlidis

The ability to computationally extract mentions of neuroanatomical regions from the literature would assist linking to other entities within and outside of an article. Examples include extracting reports of connectivity or region-specific gene expression. To facilitate text mining of neuroscience literature we have created a corpus of manually annotated brain region mentions. The corpus contains 1,377 abstracts with 18,242 brain region annotations. Interannotator agreement was evaluated for a subset of the documents, and was 90.7% and 96.7% for strict and lenient matching respectively. We observed a large vocabulary of over 6,000 unique brain region terms and 17,000 words. For automatic extraction of brain region mentions we evaluated simple dictionary methods and complex natural language processing techniques. The dictionary methods based on neuroanatomical lexicons recalled 36% of the mentions with 57% precision. The best performance was achieved using a conditional random field (CRF) with a rich feature set. Features were based on morphological, lexical, syntactic and contextual information. The CRF recalled 76% of mentions at 81% precision, by counting partial matches recall and precision increase to 86% and 92% respectively. We suspect a large amount of error is due to coordinating conjunctions, previously unseen words and brain regions of less commonly studied organisms. We found context windows, lemmatization and abbreviation expansion to be the most informative techniques. The corpus is freely available at http://www.chibi.ubc.ca/WhiteText/.

Collaboration


Dive into the Leon French's collaboration.

Top Co-Authors

Avatar

Paul Pavlidis

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gabriel Leonard

Montreal Neurological Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar

Louis Richer

Université du Québec à Chicoutimi

View shared research outputs
Top Co-Authors

Avatar

Lydia Xu

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Michel Perron

Université du Québec à Chicoutimi

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge