Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leonard D. Shultz is active.

Publication


Featured researches published by Leonard D. Shultz.


Journal of Immunology | 2005

Human Lymphoid and Myeloid Cell Development in NOD/LtSz-scid IL2Rγnull Mice Engrafted with Mobilized Human Hemopoietic Stem Cells

Leonard D. Shultz; Bonnie L. Lyons; Lisa M. Burzenski; Bruce Gott; Xiaohua Chen; Stanley Chaleff; Malak Kotb; Stephen D. Gillies; Marie King; Julie Mangada; Dale L. Greiner; Rupert Handgretinger

Ethical considerations constrain the in vivo study of human hemopoietic stem cells (HSC). To overcome this limitation, small animal models of human HSC engraftment have been used. We report the development and characterization of a new genetic stock of IL-2R common γ-chain deficient NOD/LtSz-scid (NOD-scid IL2Rγnull) mice and document their ability to support human mobilized blood HSC engraftment and multilineage differentiation. NOD-scid IL2Rγnull mice are deficient in mature lymphocytes and NK cells, survive beyond 16 mo of age, and even after sublethal irradiation resist lymphoma development. Engraftment of NOD-scid IL2Rγnull mice with human HSC generate 6-fold higher percentages of human CD45+ cells in host bone marrow than with similarly treated NOD-scid mice. These human cells include B cells, NK cells, myeloid cells, plasmacytoid dendritic cells, and HSC. Spleens from engrafted NOD-scid IL2Rγnull mice contain human Ig+ B cells and lower numbers of human CD3+ T cells. Coadministration of human Fc-IL7 fusion protein results in high percentages of human CD4+CD8+ thymocytes as well human CD4+CD8− and CD4−CD8+ peripheral blood and splenic T cells. De novo human T cell development in NOD-scid IL2Rγnull mice was validated by 1) high levels of TCR excision circles, 2) complex TCRβ repertoire diversity, and 3) proliferative responses to PHA and streptococcal superantigen, streptococcal pyrogenic exotoxin. Thus, NOD-scid IL2Rγnull mice engrafted with human mobilized blood stem cells provide a new in vivo long-lived model of robust multilineage human HSC engraftment.


Nature Reviews Immunology | 2007

Humanized mice in translational biomedical research

Leonard D. Shultz; Fumihiko Ishikawa; Dale L. Greiner

The culmination of decades of research on humanized mice is leading to advances in our understanding of human haematopoiesis, innate and adaptive immunity, autoimmunity, infectious diseases, cancer biology and regenerative medicine. In this Review, we discuss the development of these new generations of humanized mice, how they will facilitate translational research in several biomedical disciplines and approaches to overcome the remaining limitations of these models.


Cell | 1993

Mutations at the murine motheaten locus are within the hematopoietic cell protein-tyrosine phosphatase (Hcph) gene

Leonard D. Shultz; Peter A. Schweitzer; Thiruchandurai V. Rajan; Taolin Yi; James N. Ihle; R. James Matthews; Matthew L. Thomas; David R. Beier

Mice homozygous for the recessive allelic mutation motheaten (me) or viable motheaten (mev) on chromosome 6 develop severe defects in hematopoiesis. In this paper we present the findings that the me and mev mutations are within the hematopoietic cell protein-tyrosine phosphatase (Hcph) gene. High resolution mapping localized me to an area tightly linked to Hcph on chromosome 6. Abnormalities of the Hcph protein product were demonstrated by Western blot analysis and by activity assays in both me/me and mev/mev mice. Molecular analysis of the Hcph cDNA identified abnormal transcripts in both mutants. DNA sequence analyses of cDNA and genomic clones revealed that both the me and mev mutations are point mutations that result in aberrant splicing of the Hcph transcript. These findings provide the first available animal models for a specific protein-tyrosine phosphatase deficiency, thus facilitating determination of the precise role of this signaling molecule in hematopoiesis.


Nature Biotechnology | 2007

Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region

Fumihiko Ishikawa; Shuro Yoshida; Yoriko Saito; Atsushi Hijikata; Hiroshi Kitamura; Satoshi Tanaka; Ryu Nakamura; Toru Tanaka; Hiroko Tomiyama; Noriyuki Saito; Mitsuhiro Fukata; Toshihiro Miyamoto; Bonnie L. Lyons; Koichi Ohshima; Naoyuki Uchida; Shuichi Taniguchi; Osamu Ohara; Koichi Akashi; Mine Harada; Leonard D. Shultz

Acute myelogenous leukemia (AML) is the most common adult leukemia, characterized by the clonal expansion of immature myeloblasts initiating from rare leukemic stem (LS) cells. To understand the functional properties of human LS cells, we developed a primary human AML xenotransplantation model using newborn nonobese diabetic/severe combined immunodeficient/interleukin (NOD/SCID/IL)2rγnull mice carrying a complete null mutation of the cytokine γc upon the SCID background. Using this model, we demonstrated that LS cells exclusively recapitulate AML and retain self-renewal capacity in vivo. They home to and engraft within the osteoblast-rich area of the bone marrow, where AML cells are protected from chemotherapy-induced apoptosis. Quiescence of human LS cells may be a mechanism underlying resistance to cell cycle–dependent cytotoxic therapy. Global transcriptional profiling identified LS cell–specific transcripts that are stable through serial transplantation. These results indicate the potential utility of this AML xenograft model in the development of novel therapeutic strategies targeted at LS cells.


Cell | 2008

T Cell-Specific siRNA Delivery Suppresses HIV-1 Infection in Humanized Mice

Priti Kumar; Hong Seok Ban; Sangsoo Kim; Haoquan Wu; Todd Pearson; Dale L. Greiner; Amale Laouar; Jiahong Yao; Viraga Haridas; Katsuyoshi Habiro; Yong-Guang Yang; Ji Hoon Jeong; Kuen Yong Lee; Yong Hee Kim; Sung Wan Kim; Matthias Peipp; Georg H. Fey; N. Manjunath; Leonard D. Shultz; Sang Kyung Lee; Premlata Shankar

Evaluation of the therapeutic potential of RNAi for HIV infection has been hampered by the challenges of siRNA delivery and lack of suitable animal models. Using a delivery method for T cells, we show that siRNA treatment can dramatically suppress HIV infection. A CD7-specific single-chain antibody was conjugated to oligo-9-arginine peptide (scFvCD7-9R) for T cell-specific siRNA delivery in NOD/SCIDIL2rgamma-/- mice reconstituted with human lymphocytes (Hu-PBL) or CD34+ hematopoietic stem cells (Hu-HSC). In HIV-infected Hu-PBL mice, treatment with anti-CCR5 (viral coreceptor) and antiviral siRNAs complexed to scFvCD7-9R controlled viral replication and prevented the disease-associated CD4 T cell loss. This treatment also suppressed endogenous virus and restored CD4 T cell counts in mice reconstituted with HIV+ peripheral blood mononuclear cells. Moreover, scFvCD7-9R could deliver antiviral siRNAs to naive T cells in Hu-HSC mice and effectively suppress viremia in infected mice. Thus, siRNA therapy for HIV infection appears to be feasible in a preclinical animal model.


Diabetes | 1993

Adoptive Transfer of Diabetes Into Immunodeficient NOD-scid/scid Mice: Relative Contributions of CD4+ and CD8+ T-Cells From Diabetic Versus Prediabetic NOD.NON-Thy-1a Donors

Sherri W. Christianson; Leonard D. Shultz; Edward H. Leiter

Precise definition of the role of both CD4 and CD8 T-cell subsets from NOD mice in the adoptive transfer of diabetes has been complicated by the possibility that endogenous T-cells may be recruited. Two newly created NOD congenic stocks, NOD.NON-Thy-1aand NOD/LtSz-scid, have been used as T-cell donors and recipients, respectively, to eliminate contributions from endogenous T-cells and thus to define the requirement for transferred T-cell subsets as a function of underlying diabetes development in the NOD donor. Total T-cells and T-cell subsets prepared from either prediabetic or diabetic NOD.NON-Thy-1a donors were adoptively transferred into 6-wk-old NOD-scid/scid recipients that were monitored for diabetes development. Both flow cytometric and histological analysis of recipient spleen and pancreas after adoptive transfer showed lymphocytes of donor (Thy1.1+) origin exclusively. Total T-cell and enriched CD4+ T-cell preparations from both diabetic and young prediabetic donors transferred diabetes to NOD-scid/scid recipients. However, the mean time to diabetes onset was doubled when CD4+ lymphocytes were isolated from prediabetic versus diabetic donors, and t,+ cells over time. Enriched CD8+ populations alone were unable to transfer disease. More rigorous exclusion of CD8+ cells by means of anti-CD8 MoAb treatment in vivo of the recipients of enriched CD4+ cells demonstrated a significant difference in the diabetogenic potency of CD4+ lymphocytes from diabetic versus nondiabetic donors. Diabetes was adoptively transferred to 58% of the recipients of enriched CD4+ lymphocytes from diabetic donors. In contrast, none of the recipients of enriched CD4+ lymphocytes from young prediabetic donors developed diabetes after MoAb treatment in vivo. The ability of a T-cell population to produce severe insulitis and sialitis in NOD-scid/scid recipients of T-cells closely paralleled its ability to induce diabetes. In an effort to suppress insulitis by suppression of macrophage migration to the islets, NOD-scid/scid mice were treated with silica in conjunction with adoptive transfer of T-cells from diabetic donors. Chronic silica treatment failed to deplete tissue macrophages and did not prevent diabetes development after transfer of unfractionated T-cells. Evidence is discussed indicating that the age-associated differences in ability of CD4+ T-cells to adoptively transfer diabetes in the absence of the CD8+ T-cells subset is a function of prior, chronic exposure of the CD4+ lymphocytes to β-cell antigens in the donor. This study confirms that both CD4+ and CD8+ T-cells are required to initiate β-cell destruction in NOD mice.


Journal of Clinical Investigation | 1998

Long-term survival of skin allografts induced by donor splenocytes and anti-CD154 antibody in thymectomized mice requires CD4(+) T cells, interferon-gamma, and CTLA4.

Thomas G. Markees; Nancy E. Phillips; Ethel J. Gordon; Randolph J. Noelle; Leonard D. Shultz; John P. Mordes; Dale L. Greiner; Aldo A. Rossini

Treatment of C57BL/6 mice with one transfusion of BALB/c spleen cells and anti-CD154 (anti-CD40-ligand) antibody permits BALB/c islet grafts to survive indefinitely and BALB/c skin grafts to survive for approximately 50 d without further intervention. The protocol induces long-term allograft survival, but the mechanism is unknown. We now report: (a) addition of thymectomy to the protocol permitted skin allografts to survive for > 100 d, suggesting that graft rejection in euthymic mice results from thymic export of alloreactive T cells. (b) Clonal deletion is not the mechanism of underlying long-term graft survival, as recipient thymectomized mice were immunocompetent and harbor alloreactive T cells. (c) Induction of skin allograft acceptance initially depended on the presence of IFN-gamma, CTLA4, and CD4(+) T cells. Addition of anti-CTLA4 or anti-IFN-gamma mAb to the protocol was associated with prompt graft rejection, whereas anti-IL-4 mAb had no effect. The role of IFN-gamma was confirmed using knockout mice. (d) Graft survival was associated with the absence of IFN-gamma in the graft. (e) Long-term graft maintenance required the continued presence of CD4(+) T cells. The results suggest that, with modification, our short-term protocol may yield a procedure for the induction of long-term graft survival without prolonged immunosuppression.


Stem Cells | 1998

SCID Mouse Models of Human Stem Cell Engraftment

Dale L. Greiner; RuthAnn M. Hesselton; Leonard D. Shultz

The discovery of the severe combined immunodeficiency (scid) mouse mutation has provided a tool for establishment of small animal models as hosts for the in vivo analysis of normal and malignant human pluripotent hemopoietic stem cells. Intravenous injection of irradiated scid mice with human bone marrow, cord blood, or G‐CSF cytokine‐mobilized peripheral blood mononuclear cells, all rich in human hemopoietic stem cell activity, results in the engraftment of a human hemopoietic system in the murine recipient. This model has been used to identify a pluripotent stem cell, termed “scid‐repopulating cell” (SRC) that is more primitive than any of the hemopoietic stem cell populations identified using the currently available in vitro methodology. In this review, we describe the development and use of this model system, termed Hu‐SRC‐SCID, and summarize the discoveries that have resulted from the investigation of human stem cells in this model. Finally, we detail the recent extension of the original Hu‐SRC‐SCID model system based on the C.B‐17‐scid mouse as the murine host to the Hu‐SRC‐NOD‐SCID model based on the NOD‐scid mouse as the host. The engraftment of human stem cells in the Hu‐SRC‐NOD‐SCID model is enhanced over that observed in the Hu‐SRC‐SCID model and results in exceptionally high levels of human hemopoietic cells in the murine recipient. Future directions to further improve the Hu‐SRC‐NOD‐SCID model system and the potential utility of this model in the preclinical and diagnostic arenas of hematology and oncology are discussed.


Nature Genetics | 2002

Mutations in the gene encoding the lamin B receptor produce an altered nuclear morphology in granulocytes (Pelger-Huet anomaly).

Katrin Hoffmann; Christine Dreger; Ada L. Olins; Donald E. Olins; Leonard D. Shultz; Barbara Lucke; Hartmut Karl; Reinhard Kaps; Dietmar Müller; Amparo Vayá; Justo Aznar; Russell E. Ware; Norberto Sotelo Cruz; Tom H. Lindner; Harald Herrmann; André Reis; Karl Sperling

Pelger–Huët anomaly (PHA; OMIM *169400) is an autosomal dominant disorder characterized by abnormal nuclear shape and chromatin organization in blood granulocytes. Affected individuals show hypolobulated neutrophil nuclei with coarse chromatin. Presumed homozygous individuals have ovoid neutrophil nuclei, as well as varying degrees of developmental delay, epilepsy and skeletal abnormalities. Homozygous offspring in an extinct rabbit lineage showed severe chondrodystrophy, developmental anomalies and increased pre- and postnatal mortality. Here we show, by carrying out a genome-wide linkage scan, that PHA is linked to chromosome 1q41–43. We identified four splice-site, two frameshift and two nonsense mutations in LBR, encoding the lamin B receptor. The lamin B receptor (LBR), a member of the sterol reductase family, is evolutionarily conserved and integral to the inner nuclear membrane; it targets heterochromatin and lamins to the nuclear membrane. Lymphoblastoid cells from heterozygous individuals affected with PHA show reduced expression of the lamin B receptor, and cells homozygous with respect to PHA contain only trace amounts of it. We found that expression of the lamin B receptor affects neutrophil nuclear shape and chromatin distribution in a dose-dependent manner. Our findings have implications for understanding nuclear envelope–heterochromatin interactions, the pathogenesis of Pelger-like conditions in leukemia, infection and toxic drug reactions, and the evolution of neutrophil nuclear shape.


Nature Biotechnology | 2010

Induction of cell cycle entry eliminates human leukemia stem cells in a mouse model of AML

Yoriko Saito; Naoyuki Uchida; Satoshi Tanaka; Nahoko Suzuki; Mariko Tomizawa-Murasawa; Akiko Sone; Yuho Najima; Shinsuke Takagi; Yuki Aoki; Atsushi Wake; Shuichi Taniguchi; Leonard D. Shultz; Fumihiko Ishikawa

Cancer stem cells have been proposed to be important for initiation, maintenance and recurrence of various malignancies, including acute myeloid leukemia (AML). We have previously reported that CD34+CD38− human primary AML stem cells residing in the endosteal region of the bone marrow are relatively chemotherapy resistant. Using a NOD/SCID/IL2rγnull mouse model of human AML, we now show that the AML stem cells in the endosteal region are cell cycle quiescent and that these stem cells can be induced to enter the cell cycle by treatment with granulocyte colony-stimulating factor (G-CSF). In combination with cell cycle-dependent chemotherapy, G-CSF treatment significantly enhances induction of apoptosis and elimination of human primary AML stem cells in vivo. The combination therapy leads to significantly increased survival of secondary recipients after transplantation of leukemia cells compared with chemotherapy alone.

Collaboration


Dive into the Leonard D. Shultz's collaboration.

Top Co-Authors

Avatar

Dale L. Greiner

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Michael A. Brehm

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Aldo A. Rossini

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Lisa M. Burzenski

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Thiruchandurai V. Rajan

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bonnie L. Lyons

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

John P. Mordes

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Todd Pearson

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Bruce Gott

German Cancer Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge