Leonard E. Baum
Microsoft
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Leonard E. Baum.
Bulletin of the American Mathematical Society | 1967
Leonard E. Baum; J. A. Eagon
1. Summary. The object of this note is to prove the theorem below and sketch two applications, one to statistical estimation for (proba-bilistic) functions of Markov processes [l] and one to Blakleys model for ecology [4]. 2. Result. THEOREM. Let P(x)=P({xij}) be a polynomial with nonnegative coefficients homogeneous of degree d in its variables {##}. Let x= {##} be any point of the domain D: ## §:(), ]pLi ## = 1, i = l, • • • , p, j=l, • • • , q%. For x= {xij} ££> let 3(#) = 3{##} denote the point of D whose i, j coordinate is (dP\ \ f « dP 3(*)<i = (Xij 7—) / 2* *<i — \ dXij\(X)// ,-i dXij (»> Then P(3(x))>P(x) unless 3(x)=x. Notation, fi will denote a doubly indexed array of nonnegative integers: fx= {M#}> i = l> • • • > <lu i=l, • • • , A #* then denotes Ilf-iHî-i^* Similarly, c M is an abbreviation for C[ MiJ }. The polynomial P({xij}) is then written P(x) = ]CM V^-In our notation : (1) 3(&)*i = (Z) «Wnys*) / JLH CpiiijX».
Annals of Mathematical Statistics | 1970
Leonard E. Baum; Ted Petrie; George Soules; Norman Weiss
Annals of Mathematical Statistics | 1966
Leonard E. Baum; Ted Petrie
Annals of Mathematical Statistics | 1965
Leonard E. Baum; Patrick Billingsley
Bulletin of the American Mathematical Society | 1963
Leonard E. Baum; Melvin Katz
Annals of Mathematical Statistics | 1971
Leonard E. Baum; Melvin Katz; H. H. Stratton
Annals of Mathematical Statistics | 1963
Leonard E. Baum; Melvin Katz
Transactions of the American Mathematical Society | 1973
Leonard E. Baum; H. H. Stratton
Bulletin of the American Mathematical Society | 1963
Leonard E. Baum; John D. Ferguson; Melvin Katz
Annals of Mathematical Statistics | 1963
Leonard E. Baum