Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leonard J. Cleary is active.

Publication


Featured researches published by Leonard J. Cleary.


The Journal of Neuroscience | 1998

Cellular Correlates of Long-Term Sensitization in Aplysia

Leonard J. Cleary; Wai L. Lee; John H. Byrne

Although in vitro analyses of long-term changes in the sensorimotor connection of Aplysia have been used extensively to understand long-term sensitization, relatively little is known about the ways in which the connection is modified by learningin vivo. Moreover, sites other than the sensory neurons might be modified as well. In this paper, several different biophysical properties of sensory neurons, motor neurons, and LPl17, an identified interneuron, were examined. Membrane properties of sensory neurons, which were expressed as increased excitability and increased spike afterdepolarization, were affected by the training. The biophysical properties of motor neurons also were affected by training, resulting in hyperpolarization of the resting membrane potential and a decrease in spike threshold. These results suggest that motor neurons are potential loci for storage of the memory in sensitization. The strength of the connection between sensory and motor neurons was affected by the training, although the connection between LPl17 and the motor neuron was unaffected. Biophysical properties of LPl17 were unaffected by training. The results emphasize the importance of plasticity at sensory–motor synapses and are consistent with the idea that there are multiple sites of plasticity distributed throughout the nervous system.


Annals of the New York Academy of Sciences | 1991

Neural and Molecular Bases of Nonassociative and Associative Learning in Aplysia

John H. Byrne; Douglas A. Baxter; Dean V. Buonomano; Leonard J. Cleary; Arnold Eskin; Jason R. Goldsmith; Ev McCLENDON; Fidelma A. Nazif; Florence Noel; Kenneth P. Scholz

A model that summarizes some of the neural and molecular mechanisms contributing to short- and long-term sensitization is shown in Figure 14. Sensitizing stimuli lead to the release of a modulatory transmitter such as 5-HT. Both serotonin and sensitizing stimuli lead to an increase in the synthesis of cAMP and the modulation of a number of K+ currents through protein phosphorylation. Closure of these K+ channels leads to membrane depolarization and the enhancement of excitability. An additional consequence of the modulation of the K+ currents is a reduction of current during the repolarization of the action potential, which leads to an increase in its duration. As a result, Ca2+ flows into the cell for a correspondingly longer period of time, and additional transmitter is released from the cell. Modulation of the pool of transmitter available for release (mobilization) also appears to occur as a result of sensitizing stimuli. Recent evidence indicates that the mobilization process can be activated by both cAMP-dependent protein kinase and protein kinase C. Thus, release of transmitter is enhanced not only because of the greater influx of Ca2+ but also because more transmitter is made available for release by mobilization. The enhanced release of transmitter leads to enhanced activation of motor neurons and an enhanced behavioral response. Just as the regulation of membrane currents is used as a read out of the memory for short-term sensitization, it also is used as a read out of the memory for long-term sensitization. But long-term sensitization differs from short-term sensitization in that morphological changes are associated with it, and long-term sensitization requires new protein synthesis. The mechanisms that induce and maintain the long-term changes are not yet fully understood (see the dashed lines in Fig. 14) although they are likely to be due to direct interactions with the translation apparatus and perhaps also to events occurring in the cell nucleus. Nevertheless, it appears that the same intracellular messenger, cAMP, that contributes to the expression of the short-term changes, also triggers cellular processes that lead to the long-term changes. One possible mechanism for the action of cAMP is through its regulation of the synthesis of membrane modulatory proteins or key effector proteins (for example, membrane channels). It is also possible that long-term changes in membrane currents could be due in part to enhanced activity of the cAMP-dependent protein kinase so that there is a persistent phosphorylation of target proteins.(ABSTRACT TRUNCATED AT 400 WORDS)


Brain Research | 1991

cAMP induces long-term morphological changes in sensory neurons ofAplysia

Fidelma A. Nazif; John H. Byrne; Leonard J. Cleary

Long-term sensitization of defensive reflexes in the marine mollusc Aplysia has been correlated with biophysical changes in the somata of sensory neurons that mediate the reflexes and with morphological changes in their axonal processes. The biophysical changes can also be mimicked by intracellular injection of cAMP. In this report we demonstrate that cAMP induces long-term structural changes in pleural sensory neurons, providing a mechanism for this form of memory storage.


Nature Neuroscience | 2012

Computational design of enhanced learning protocols

Yili Zhang; Rong Yu Liu; George A. Heberton; Paul Smolen; Douglas A. Baxter; Leonard J. Cleary; John H. Byrne

Learning and memory are influenced by the temporal pattern of training stimuli. However, the mechanisms that determine the effectiveness of a particular training protocol are not well understood. We tested the hypothesis that the efficacy of a protocol is determined in part by interactions among biochemical cascades that underlie learning and memory. Previous findings suggest that the protein kinase A (PKA) and extracellular signal–regulated kinase (ERK) cascades are necessary to induce long-term synaptic facilitation (LTF) in Aplysia, a neuronal correlate of memory. We developed a computational model of the PKA and ERK cascades and used it to identify a training protocol that maximized PKA and ERK interactions. In vitro studies confirmed that the protocol enhanced LTF. Moreover, the protocol enhanced the levels of phosphorylation of the transcription factor CREB1. Behavioral training confirmed that long-term memory also was enhanced by the protocol. These results illustrate the feasibility of using computational models to design training protocols that improve memory.


The Journal of Neuroscience | 2011

The Requirement for Enhanced CREB1 Expression in Consolidation of Long-Term Synaptic Facilitation and Long-Term Excitability in Sensory Neurons of Aplysia

Rong Yu Liu; Leonard J. Cleary; John H. Byrne

Accumulating evidence suggests that the transcriptional activator cAMP response element-binding protein 1 (CREB1) is important for serotonin (5-HT)-induced long-term facilitation (LTF) of the sensorimotor synapse in Aplysia. Moreover, creb1 is among the genes activated by CREB1, suggesting a role for this protein beyond the induction phase of LTF. The time course of the requirement for CREB1 synthesis in the consolidation of long-term facilitation was examined using RNA interference techniques in sensorimotor cocultures. Injection of CREB1 small-interfering RNA (siRNA) immediately or 10 h after 5-HT treatment blocked LTF when measured at 24 and 48 h after treatment. In contrast, CREB1 siRNA did not block LTF when injected 16 h after 5-HT treatment. These results demonstrate that creb1 expression must be sustained for a relatively long time to support the consolidation of LTF. In addition, LTF is also accompanied by a long-term increase in the excitability (LTE) of sensory neurons (SNs). Because LTE was observed in the isolated SN after 5-HT treatment, this long-term change was intrinsic to that element of the circuit. LTE was blocked when CREB1 siRNA was injected into isolated SNs immediately after 5-HT treatment. These data suggest that 5-HT-induced CREB1 synthesis is required for consolidation of both LTF and LTE.


The Journal of Neuroscience | 2011

Serotonin-mediated synapsin expression is necessary for long-term facilitation of the Aplysia sensorimotor synapse

Anne K. Hart; Diasinou Fioravante; Rong Yu Liu; Gregg A. Phares; Leonard J. Cleary; John H. Byrne

Serotonin (5-HT)-induced long-term facilitation (LTF) of the Aplysia sensorimotor synapse depends on enhanced gene expression and protein synthesis, but identification of the genes whose expression and regulation are necessary for LTF remains incomplete. In this study, we found that one such gene is synapsin, which encodes a synaptic vesicle-associated protein known to regulate short-term synaptic plasticity. Both synapsin mRNA and protein levels were increased by 5-HT. Upregulation of synapsin protein occurred in presynaptic sensory neurons at neurotransmitter release sites. To investigate the molecular mechanisms underlying synapsin regulation, we cloned the promoter region of Aplysia synapsin, and found that the synapsin promoter contained a cAMP response element (CRE), raising the possibility that the transcriptional activator CRE-binding protein 1 (CREB1) mediates 5-HT-induced regulation of synapsin. Indeed, binding of CREB1 to the synapsin promoter was increased following treatment with 5-HT. Furthermore, increased acetylation of histones H3 and H4 and decreased association of histone deacetylase 5 near the CRE site are consistent with transcriptional activation by CREB1. RNA interference (RNAi) targeting synapsin mRNA blocked the 5-HT-induced increase in synapsin protein levels and LTF; in the absence of 5-HT treatment, basal synapsin levels were unaffected. These results indicate that the 5-HT-induced regulation of synapsin levels is necessary for LTF and that this regulation is part of the cascade of synaptic events involved in the consolidation of memory.


Brain Research | 1992

Inhibitory neuron produces heterosynaptic inhibition of the sensory-to-motor neuron synapse in Aplysia.

Dean V. Buonomano; Leonard J. Cleary; John H. Byrne

We have identified an inhibitory neuron (RPL4) in the right pleural ganglion of Aplysia, which produced hyperpolarization of the sensory and motor neurons involved in the tail withdrawal reflex. Activation of RPL4 significantly reduced the amplitude of excitatory postsynaptic potentials produced in tail motor neurons by action potentials triggered in sensory neurons. This example of heterosynaptic inhibition was due, at least in part, to an increase in membrane input conductance in the motor neuron. Since the synaptic strength of the sensory-to-motor neuron connection has been associated with the strength of the tail withdrawal reflex, RPL4 may contribute to modulation of that reflex.


Neuroscience Letters | 1989

Serotonin acts in the synaptic region of sensory neruons in Aplysia to enhance transmitter release

M. Hammer; Leonard J. Cleary; John H. Byrne

An important mechanism that contributes to sensitization in Aplysia is heterosynaptic facilitation of the synaptic connections between sensory neurons (SNs) and motor neurons (MNs). Heterosynaptic facilitation, in turn, is associated with broadening of the spike in the SN. Spike broadening is readily observed in recordings from somata of SNs, and from growth cones of SNs in culture, but broadening in synaptic terminals has only been inferred. Intracellular recordings were made from somata of SNs and from somata of follower MNs. Additional recordings were made from the axons of SNs as they enter the neuropil in the pedal ganglion. Serotonin (5-HT) broadened action potentials in axons of SNs and enhanced excitatory postsynaptic potentials (EPSPs) in the MNs, even after the axons of SNs were surgically separated from their somata. These results indicate that both heterosynaptic facilitation and spike broadening in the axon are due to the local action of 5-HT and can occur independently of modulation of membrane properties in the soma.


Learning & Memory | 2011

Serotonin- and training-induced dynamic regulation of CREB2 in Aplysia

Rong Yu Liu; Shreyansh Shah; Leonard J. Cleary; John H. Byrne

Long-term memory and plasticity, including long-term synaptic facilitation (LTF) of the Aplysia sensorimotor synapse, depend on the activation of transcription factors that regulate genes necessary for synaptic plasticity. In the present study we found that treatment with 5-HT and behavioral training produce biphasic changes in the expression of CREB2, a transcriptional repressor. An immediate increase in CREB2 protein was followed by a subsequent decrease. The effects of these treatments persist for at least 24 h and are observed in isolated sensory neurons. This study suggests that the dynamics of CREB2 expression could contribute to the consolidation of memory.


The Journal of Neuroscience | 2014

Doxorubicin Attenuates Serotonin-Induced Long-Term Synaptic Facilitation by Phosphorylation of p38 Mitogen-Activated Protein Kinase

Rong Yu Liu; Yili Zhang; Brittany L. Coughlin; Leonard J. Cleary; John H. Byrne

Doxorubicin (DOX) is an anthracycline used widely for cancer chemotherapy. Its primary mode of action appears to be topoisomerase II inhibition, DNA cleavage, and free radical generation. However, in non-neuronal cells, DOX also inhibits the expression of dual-specificity phosphatases (also referred to as MAPK phosphatases) and thereby inhibits the dephosphorylation of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (p38 MAPK), two MAPK isoforms important for long-term memory (LTM) formation. Activation of these kinases by DOX in neurons, if present, could have secondary effects on cognitive functions, such as learning and memory. The present study used cultures of rat cortical neurons and sensory neurons (SNs) of Aplysia to examine the effects of DOX on levels of phosphorylated ERK (pERK) and phosphorylated p38 (p-p38) MAPK. In addition, Aplysia neurons were used to examine the effects of DOX on long-term enhanced excitability, long-term synaptic facilitation (LTF), and long-term synaptic depression (LTD). DOX treatment led to elevated levels of pERK and p-p38 MAPK in SNs and cortical neurons. In addition, it increased phosphorylation of the downstream transcriptional repressor cAMP response element-binding protein 2 in SNs. DOX treatment blocked serotonin-induced LTF and enhanced LTD induced by the neuropeptide Phe-Met-Arg-Phe-NH2. The block of LTF appeared to be attributable to overriding inhibitory effects of p-p38 MAPK, because LTF was rescued in the presence of an inhibitor (SB203580 [4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-1H-imidazole]) of p38 MAPK. These results suggest that acute application of DOX might impair the formation of LTM via the p38 MAPK pathway.

Collaboration


Dive into the Leonard J. Cleary's collaboration.

Top Co-Authors

Avatar

John H. Byrne

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rong Yu Liu

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Arnold Eskin

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Jeannie Chin

Florida State University

View shared research outputs
Top Co-Authors

Avatar

Marcy Wainwright

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Diasinou Fioravante

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Evangelos G. Antzoulatos

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Paul Smolen

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Yili Zhang

University of Texas Health Science Center at Houston

View shared research outputs
Researchain Logo
Decentralizing Knowledge