Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leonard L. Jones is active.

Publication


Featured researches published by Leonard L. Jones.


Brain Research Reviews | 1999

Neuroglial activation repertoire in the injured brain : graded response, molecular mechanisms and cues to physiological function

Gennadij Raivich; Marion Bohatschek; Christian U.A. Kloss; Alexander Werner; Leonard L. Jones; Georg W. Kreutzberg

Damage to the central nervous system (CNS) leads to cellular changes not only in the affected neurons but also in adjacent glial cells and endothelia, and frequently, to a recruitment of cells of the immune system. These cellular changes form a graded response which is a consistent feature in almost all forms of brain pathology. It appears to reflect an evolutionarily conserved program which plays an important role in the protection against infectious pathogens and the repair of the injured nervous system. Moreover, recent work in mice that are genetically deficient for different cytokines (MCSF, IL1, IL6, TNFalpha, TGFbeta1) has begun to shed light on the molecular signals that regulate this cellular response. Here we will review this work and the insights it provides about the biological function of the neuroglial activation in the injured brain.


Experimental Neurology | 2003

Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury

Paul Lu; Leonard L. Jones; Evan Y. Snyder; Mark H. Tuszynski

Neural stem cells (NSCs) offer the potential to replace lost tissue after nervous system injury. This study investigated whether grafts of NSCs (mouse clone C17.2) could also specifically support host axonal regeneration after spinal cord injury and sought to identify mechanisms underlying such growth. In vitro, prior to grafting, C17.2 NSCs were found for the first time to naturally constitutively secrete significant quantities of several neurotrophic factors by specific ELISA, including nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor. When grafted to cystic dorsal column lesions in the cervical spinal cord of adult rats, C17.2 NSCs supported extensive growth of host axons of known sensitivity to these growth factors when examined 2 weeks later. Quantitative real-time RT-PCR confirmed that grafted stem cells expressed neurotrophic factor genes in vivo. In addition, NSCs were genetically modified to produce neurotrophin-3, which significantly expanded NSC effects on host axons. Notably, overexpression of one growth factor had a reciprocal effect on expression of another factor. Thus, stem cells can promote host neural repair in part by secreting growth factors, and their regeneration-promoting activities can be modified by gene delivery.


Experimental Neurology | 2003

The chondroitin sulfate proteoglycans neurocan, brevican, phosphacan, and versican are differentially regulated following spinal cord injury

Leonard L. Jones; Richard U. Margolis; Mark H. Tuszynski

Chondroitin sulfate proteoglycans (CSPGs) are extracellular matrix (ECM) molecules that are widely expressed throughout the developing and adult CNS. In vitro studies demonstrate their potential to restrict neurite outgrowth, and it is believed that CSPGs also inhibit axonal regeneration after CNS injury in vivo. Previous studies demonstrated that CSPGs are generally upregulated after spinal cord injury, and more recent reports have begun to identify individual proteoglycans that may play dominant roles in limiting axonal regeneration. The current study systematically examined the extended deposition patterns after CNS injury of four putatively inhibitory CSPGs that have not been extensively investigated previously in vivo: neurocan, brevican, phosphacan, and versican. After spinal cord injury, neurocan, brevican, and versican immunolabeling increased within days in injured spinal cord parenchyma surrounding the lesion site and peaked at 2 weeks. Neurocan and versican were persistently elevated for 4 weeks postinjury, and brevican expression persisted for at least 2 months. On the other hand, phosphacan immunolabeling decreased in the same region immediately following injury but later recovered and then peaked after 2 months. Combined glial fibrillary acidic protein (GFAP) immunohistochemistry and in situ hybridization demonstrated that GFAP astrocytes constituted a source of neurocan production after spinal cord injury. Thus, the production of several CSPG family members is differentially affected by spinal cord injury, overall establishing a CSPG-rich matrix that persists for up to 2 months following injury. Optimization of strategies to reduce CSPG expression to enhance regeneration may need to target several different family members over an extended period following injury.


The Journal of Neuroscience | 2004

Combinatorial Therapy with Neurotrophins and cAMP Promotes Axonal Regeneration beyond Sites of Spinal Cord Injury

Paul Lu; Hong Yang; Leonard L. Jones; Marie T. Filbin; Mark H. Tuszynski

Previous attempts to promote regeneration after spinal cord injury have succeeded in stimulating axonal growth into or around lesion sites but rarely beyond them. We tested whether a combinatorial approach of stimulating the neuronal cell body with cAMP and the injured axon with neurotrophins would propel axonal growth into and beyond sites of spinal cord injury. A preconditioning stimulus to sensory neuronal cell bodies was delivered by injecting cAMP into the L4 dorsal root ganglion, and a postinjury stimulus to the injured axon was administered by injecting neurotrophin-3 (NT-3) within and beyond a cervical spinal cord lesion site grafted with autologous bone marrow stromal cells. One to 3 months later, long-projecting dorsal-column sensory axons regenerated into and beyond the lesion. Regeneration beyond the lesion did not occur after treatment with cAMP or NT-3 alone. Thus, clear axonal regeneration beyond spinal cord injury sites can be achieved by combinatorial approaches that stimulate both the neuronal soma and the axon, representing a major advance in strategies to enhance spinal cord repair.


The Journal of Neuroscience | 2003

Axonal Regeneration through Regions of Chondroitin Sulfate Proteoglycan Deposition after Spinal Cord Injury: A Balance of Permissiveness and Inhibition

Leonard L. Jones; Dana Sajed; Mark H. Tuszynski

Increased expression of certain extracellular matrix (ECM) molecules after CNS injury is believed to restrict axonal regeneration. The chondroitin sulfate proteoglycans (CSPGs) are one such class of ECM molecules that inhibit neurite outgrowth in vitro and are upregulated after CNS injury. We examined growth responses of several classes of axons to this inhibitory environment in the presence of a cellular fibroblast bridge in a spinal cord lesion site and after a growth factor stimulus at the lesion site (fibroblasts genetically modified to secrete NGF). Immunohistochemical analysis showed dense labeling of the CSPGs NG2, brevican, neurocan, versican, and phosphacan at the host-lesion interface after spinal cord injury (SCI). Furthermore, robust expression of NG2, and to a lesser extent versican, was also observed throughout grafts of control and NGF-secreting fibroblasts. Despite this inhibitory milieu, several axonal classes penetrated control fibroblast grafts, including dorsal column sensory, rubrospinal, and nociceptive axons. Axon growth was amplified more in the presence of NGF-secreting grafts. Confocal microscopy demonstrated that axon growth was, paradoxically, preferentially associated with NG2-rich substrates in both graft types. NG2 expression also increased after sciatic nerve injury, wherein axons successfully regenerate. Cellular sources of NG2 in SCI and peripheral nerve lesion sites included Schwann cells and endothelial cells. Notably, these same cellular sources in lesion sites produced the cell adhesion molecules L1 and laminin, and these molecules all colocalized. Thus, axons grow along substrates coexpressing both inhibitory and permissive molecules, suggesting that regeneration is successful when local permissive signals balance and exceed inhibitory signals.


Glia | 1997

Impaired neuroglial activation in interleukin-6 deficient mice.

Michael A. Klein; J. Carsten Mller; Leonard L. Jones; Horst Bluethmann; Georg W. Kreutzberg; Genadij Raivich

Astrocyte activation is a ubiquitous hallmark of the damaged brain and has been suggested to play an important regulatory role in the activation, survival, and regeneration of adjacent neurons, microglia, and oligodendrocytes. Little is known, however, about the endogenous signals that lead to this activation of astrocytes. Here we examined the regulation of interleukin 6 (IL6), a proinflammatory cytokine, its receptors, and the effects of IL6‐deficiency in a model of traumatic central nervous system injury in the axotomized mouse facial motor nucleus. Facial nerve transection led to a massive but transient upregulation of IL6 mRNA in the disconnected motor nucleus, while IL6‐receptor subunits were constitutively expressed on motoneurons and astrocytes. Absence of IL6 in genetically IL6‐deficient mice led to massive reduction in the number of activated GFAP‐positive astrocytes, a more moderate decrease in microglial activation and proliferation, and an increase in the late neuronal response to axotomy. These results emphasize the role of IL6 in the global regulation of neurons, astrocytes, and microglia and their activation in the injured nervous system. GLIA 19:227–233, 1997.


The Journal of Physiology | 2001

Neurotrophic factors, cellular bridges and gene therapy for spinal cord injury

Leonard L. Jones; Martin Oudega; Mary Bartlett Bunge; Mark H. Tuszynski

Injury to the adult mammalian spinal cord results in extensive axonal degeneration, variable amounts of neuronal loss, and often severe functional deficits. Restoration of controlled function depends on regeneration of these axons through an injury site and the formation of functional synaptic connections. One strategy that has emerged for promoting axonal regeneration after spinal cord injury is the implantation of autologous Schwann cells into sites of spinal cord injury to support and guide axonal growth. Further, more recent experiments have shown that neurotrophic factors can also promote axonal growth, and, when combined with Schwann cell grafts, can further amplify axonal extension after injury. Continued preclinical development of these approaches to neural repair may ultimately generate strategies that could be tested in human injury.


The Journal of Neuroscience | 2006

Neurotrophin-3 Gradients Established by Lentiviral Gene Delivery Promote Short-Distance Axonal Bridging beyond Cellular Grafts in the Injured Spinal Cord

Laura Taylor; Leonard L. Jones; Mark H. Tuszynski; Armin Blesch

Neurotrophic factor delivery to sites of spinal cord injury (SCI) promotes axon growth into but not beyond lesion sites. We tested the hypothesis that sustained growth factor gradients beyond regions of SCI will promote significant axonal bridging into and beyond lesions. Adult rats underwent C3 lesions to transect ascending dorsal column sensory axons, and autologous bone marrow stromal cells were grafted into the lesion to provide a cellular bridge for growth into the injured region. Concurrently, lentiviral vectors expressing neurotrophin-3 (NT-3) or green fluorescent protein (GFP) (controls) were injected into the host cord rostral to the lesion to promote axon extension beyond the graft/lesion. Four weeks later, NT-3 gradients beyond the lesion were detectable by ELISA in animals that received NT-3-expressing lentiviral vectors, with highest average NT-3 levels located near the rostral vector injection site. Significantly more ascending sensory axons extended into tissue rostral to the lesion site in animals injected with NT-3 vectors compared with GFP vectors, but only if the zone of NT-3 vector transduction extended continuously from the injection site to the graft; any “gap” in NT-3 expression from the graft to rostral tissue resulted in axon bridging failure. Despite axon bridging beyond the lesion, regenerating axons did not continue to grow over very long distances, even in the presence of a continuing growth factor gradient beyond the lesion. These findings indicate that a localized and continuous gradient of NT-3 can achieve axonal bridging beyond the glial scar, but growth for longer distances is not sustainable simply with a trophic stimulus.


Experimental Neurology | 2003

NT-3 gene delivery elicits growth of chronically injured corticospinal axons and modestly improves functional deficits after chronic scar resection.

Mark H. Tuszynski; Ray Grill; Leonard L. Jones; Adam Brant; Armin Blesch; Karin Löw; Steve Lacroix; Paul Lu

Nervous system growth factors promote axonal growth following acute spinal cord injury. In the present experiment, we examined whether delivery of neurotrophic factors after chronic spinal cord injury would also promote axonal growth and influence functional outcomes. Adult Fischer 344 rats underwent mid-thoracic spinal cord dorsal hemisection lesions. Three months later, primary fibroblasts genetically modified to express human neurotrophin-3 (NT-3) were placed in, and distal to, the lesion cavity. Upon sacrifice 3 months later (6 months following the initial lesion), NT-3-grafted animals exhibited significant growth of corticospinal axons up to 15 mm distal to the lesion site and showed a modest but significant 1.5-point improvement in locomotor scores (P < 0.05) on the BBB scale, compared to control-grafted animals. Thus, growth factor gene delivery can elicit growth of corticospinal axons in chronic stages of injury and improves functional outcomes compared to non-growth-factor-treated animals.


Glia | 1996

Regulation of thrombospondin in the regenerating mouse facial motor nucleus

J. Carsten Möller; Michael A. Klein; Stefan A. Haas; Leonard L. Jones; Georg W. Kreutzberg; Gennadij Raivich

Thrombospondin (TSP) is a multifunctional extracellular matrix protein that plays a role in neuronal migration and axonal outgrowth in the developing central nervous system. In the current study we have examined the localization and regulation of TSP immunoreactivity (TSP‐IR) during neuronal regeneration in the axotomized facial motor nucleus using Western blotting and light and electron microscopy.

Collaboration


Dive into the Leonard L. Jones's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Lu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ray Grill

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge