Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leonard S. Sklar is active.

Publication


Featured researches published by Leonard S. Sklar.


Geology | 2001

Sediment and rock strength controls on river incision into bedrock

Leonard S. Sklar; William E. Dietrich

Recent theoretical investigations suggest that the rate of river incision into bedrock depends nonlinearly on sediment supply, challenging the common assumption that incision rate is simply proportional to stream power. Our measurements from laboratory abrasion mills support the hypothesis that sediment promotes erosion at low supply rates by providing tools for abrasion, but inhibits erosion at high supply rates by burying underlying bedrock beneath transient deposits. Maximum erosion rates occur at a critical level of coarse-grained sediment supply where the bedrock is only partially exposed. Fine-grained sediments provide poor abrasive tools for lowering bedrock river beds because they tend to travel in suspension. Experiments also reveal that rock resistance to fluvial erosion scales with the square of rock tensile strength. Our results suggest that spatial and temporal variations in the extent of bedrock exposure provide incising rivers with a previously unrecognized degree of freedom in adjusting to changes in rock uplift rate and climate. Furthermore, we conclude that the grain size distribution of sediment supplied by hillslopes to the channel network is a fundamental control on bedrock channel gradients and topographic relief.


Global Environmental Change-human and Policy Dimensions | 2003

A method for quantifying vulnerability, applied to the agricultural system of the Yaqui Valley, Mexico

Amy Luers; David B. Lobell; Leonard S. Sklar; C. Lee Addams; Pamela A. Matson

Abstract We propose measuring vulnerability of selected outcome variables of concern (e.g. agricultural yield) to identified stressors (e.g. climate change) as a function of the state of the variables of concern relative to a threshold of damage, the sensitivity of the variables to the stressors, and the magnitude and frequency of the stressors to which the system is exposed. In addition, we provide a framework for assessing the extent adaptive capacity can reduce vulnerable conditions. We illustrate the utility of this approach by evaluating the vulnerability of wheat yields to climate change and market fluctuations in the Yaqui Valley, Mexico.


Geophysical monograph | 2013

Geomorphic Transport Laws for Predicting Landscape form and Dynamics

William E. Dietrich; Dino Bellugi; Leonard S. Sklar; J. D. Stock; Arjun M. Heimsath; Joshua J. Roering

A geomorphic transport law is a mathematical statement derived from a physical principle or mechanism, which expresses the mass flux or erosion caused by one or more processes in a manner that: 1) can be parameterized from field measurements, 2) can be tested in physical models, and 3) can be applied over geomorphically significant spatial and temporal scales. Such laws are a compromise between physics-based theory that requires extensive information about materials and their interactions, which may be hard to quantify across real landscapes, and rules-based approaches, which cannot be tested directly but only can be used in models to see if the model outcomes match some expected or observed state. We propose that landscape evolution modeling can be broadly categorized into detailed, apparent, statistical and essential realism models and it is the latter, concerned with explaining mechanistically the essential morphodynamic features of a landscape, in which geomorphic transport laws are most effectively applied. A limited number of studies have provided verification and parameterization of geomorphic transport laws for: linear slope-dependent transport, non-linear transport due to dilational disturbance of soil, soil production from bedrock, and river incision into bedrock. Field parameterized geomorphic transport laws, however, are lacking for many processes including landslides, debris flows, surface wash, and glacial scour. We propose the use of high- resolution topography, as initial conditions, in landscape evolution models and explore the applicability of locally parameterized geomorphic transport laws in explaining hillslope morphology in the Oregon Coast Range. This modeling reveals unexpected morphodynamics, suggesting that the use of real landscapes with geomorphic transport laws may provide new insights about the linkages between process and form.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Experimental evidence for the conditions necessary to sustain meandering in coarse-bedded rivers.

Christian A. Braudrick; William E. Dietrich; Glen T. Leverich; Leonard S. Sklar

Meandering rivers are common on Earth and other planetary surfaces, yet the conditions necessary to maintain meandering channels are unclear. As a consequence, self-maintaining meandering channels with cutoffs have not been reproduced in the laboratory. Such experimental channels are needed to explore mechanisms controlling migration rate, sinuosity, floodplain formation, and planform morphodynamics and to test theories for wavelength and bend propagation. Here we report an experiment in which meandering with near-constant width was maintained during repeated cutoff and regeneration of meander bends. We found that elevated bank strength (provided by alfalfa sprouts) relative to the cohesionless bed material and the blocking of troughs (chutes) in the lee of point bars via suspended sediment deposition were the necessary ingredients to successful meandering. Varying flood discharge was not necessary. Scaling analysis shows that the experimental meander migration was fast compared to most natural channels. This high migration rate caused nearly all of the bedload sediment to exchange laterally, such that bar growth was primarily dependent on bank sediment supplied from upstream lateral migration. The high migration rate may have contributed to the relatively low sinuosity of 1.19, and this suggests that to obtain much higher sinuosity experiments at this scale may have to be conducted for several years. Although patience is required to evolve them, these experimental channels offer the opportunity to explore several fundamental issues about river morphodynamics. Our results also suggest that sand supply may be an essential control in restoring self-maintaining, actively shifting gravel-bedded meanders.


Geology | 2001

Hillslope evolution by nonlinear creep and landsliding: An experimental study

Joshua J. Roering; James W. Kirchner; Leonard S. Sklar; William E. Dietrich

Landscape evolution models are widely used to explore links between tectonics, climate, and hillslope morphology, yet mecha- nisms of hillslope erosion remain poorly understood. Here we use a laboratory hillslope of granular material to experimentally test how creep and landsliding contribute to hillslope erosion. In our experimental hillslope, disturbance-driven sediment transport rates increase nonlinearly with slope due to dilation-driven gran- ular creep, and become increasingly episodic at steep slope angles as creep gives way to periodic landsliding. We use spectral analysis to quantify the variability of sediment flux and estimate the slope- dependent transition from creep to landsliding. The power spec- trum of sediment flux steepens with hillslope gradient, exhibiting fractal 1/f scaling just below the creep-landsliding transition. By evolving the experimental hillslope under fixed base-level boundary conditions, we demonstrate how disturbance-driven transport gen- erates hillslope convexity. The transient evolution is consistent with numerical predictions derived from a recently proposed nonlinear transport model, as initially steep hillslopes are lowered rapidly by landsliding before slopes decay slowly by creep-dominated transport.


Journal of Geophysical Research | 2008

A model for fluvial bedrock incision by impacting suspended and bed load sediment

Michael P. Lamb; William E. Dietrich; Leonard S. Sklar

[1] A mechanistic model is derived for the rate of fluvial erosion into bedrock by abrasion from uniform size particles that impact the bed during transport in both bed and suspended load. The erosion rate is equated to the product of the impact rate, the mass loss per particle impact, and a bed coverage term. Unlike previous models that consider only bed load, the impact rate is not assumed to tend to zero as the shear velocity approaches the threshold for suspension. Instead, a given sediment supply is distributed between the bed and suspended load by using formulas for the bed load layer height, bed load velocity, logarithmic fluid velocity profile, and Rouse sediment concentration profile. It is proposed that the impact rate scales linearly with the product of the near-bed sediment concentration and the impact velocity and that particles impact the bed because of gravitational settling and advection by turbulent eddies. Results suggest, unlike models that consider only bed load, that the erosion rate increases with increasing transport stage (for a given relative sediment supply), even for transport stages that exceed the onset of suspension. In addition, erosion can occur if the supply of sediment exceeds the bed load transport capacity because a portion of the sediment load is transported in suspension. These results have implications for predicting erosion rates and channel morphology, especially in rivers with fine sediment, steep channel-bed slopes, and large flood events.


Geological Society of America Bulletin | 2005

Field measurements of incision rates following bedrock exposure: Implications for process controls on the long profiles of valleys cut by rivers and debris flows

J. D. Stock; David R. Montgomery; Brian D. Collins; William E. Dietrich; Leonard S. Sklar

Until recently, published rates of incision of bedrock valleys came from indirect dating of incised surfaces. A small but growing literature based on direct measurement reports short-term bedrock lowering at geologically unsustainable rates. We report observations of bedrock lowering from erosion pins monitored over 1–7 yr in 10 valleys that cut indurated volcanic and sedimentary rocks in Washington, Oregon, California, and Taiwan. Most of these channels have historically been stripped of sediment. Their bedrock is exposed to bed-load abrasion, plucking, and seasonal wetting and drying that comminutes hard, intact rock into plates or equant fragments that are removed by higher fl ows. Consequent incision rates are proportional to the square of rock tensile strength, in agreement with experimental results of others. Measured rates up to centimeters per year far exceed regional long-term erosionrate estimates, even for apparently minor sediment-transport rates. Cultural artifacts on adjoining strath terraces in Washington and Taiwan indicate at least several decades of lowering at these extreme rates. Lacking sediment cover, lithologies at these sites lower at rates that far exceed long-term rock-uplift rates. This rate disparity makes it unlikely that the long profi les of these rivers are directly adjusted to either bedrock hardness or rock-uplift rate in the manner predicted by the stream power law, despite the observation that their profi les are well fi t by power-law plots of drainage area vs. slope. We hypothesize that the threshold of motion of a thin sediment mantle, rather than bedrock hardness or rock-uplift rate, controls channel slope in weak bedrock lithologies with tensile strengths below ~3–5 MPa. To illustrate this hypothesis and to provide an alternative interpretation for power-law plots of area vs. slope, we combine Shields’ threshold transport concept with measured hydraulic relationships and downstream fi ning rates. In contrast to fl uvial reaches, none of the hundreds of erosion pins we installed in steep valleys recently scoured to bedrock by debris fl ows indicate any postevent fl uvial lowering. These results are consistent with episodic debris fl ows as the primary agent of bedrock lowering in the steepest parts of the channel network above ~0.03–0.10 slope.


Geological Society of America Bulletin | 2013

Fluvial features on Titan: Insights from morphology and modeling

Devon M. Burr; J. Taylor Perron; Michael P. Lamb; Rossman P. Irwin; G. C. Collins; Alan D. Howard; Leonard S. Sklar; Jeffrey M. Moore; Máté Ádámkovics; Victor R. Baker; Sarah A. Drummond; Benjamin A. Black

Fluvial features on Titan have been identified in synthetic aperture radar (SAR) data taken during spacecraft flybys by the Cassini Titan Radar Mapper (RADAR) and in Descent Imager/Spectral Radiometer (DISR) images taken during descent of the Huygens probe to the surface. Interpretations using terrestrial analogs and process mechanics extend our perspective on fluvial geomorphology to another world and offer insight into their formative processes. At the landscape scale, the varied morphologies of Titan’s fluvial networks imply a variety of mechanical controls, including structural influence, on channelized flows. At the reach scale, the various morphologies of individual fluvial features, implying a broad range of fluvial processes, suggest that (paleo-)flows did not occupy the entire observed width of the features. DISR images provide a spatially limited view of uplands dissected by valley networks, also likely formed by overland flows, which are not visible in lower-resolution SAR data. This high-resolution snapshot suggests that some fluvial features observed in SAR data may be river valleys rather than channels, and that uplands elsewhere on Titan may also have fine-scale fluvial dissection that is not resolved in SAR data. Radar-bright terrain with crenulated bright and dark bands is hypothesized here to be a signature of fine-scale fluvial dissection. Fluvial deposition is inferred to occur in braided channels, in (paleo)lake basins, and on SAR-dark plains, and DISR images at the surface indicate the presence of fluvial sediment. Flow sufficient to move sediment is inferred from observations and modeling of atmospheric processes, which support the inference from surface morphology of precipitation-fed fluvial processes. With material properties appropriate for Titan, terrestrial hydraulic equations are applicable to flow on Titan for fully turbulent flow and rough boundaries. For low-Reynolds-number flow over smooth boundaries, however, knowledge of fluid kinematic viscosity is necessary. Sediment movement and bed form development should occur at lower bed shear stress on Titan than on Earth. Scaling bedrock erosion, however, is hampered by uncertainties regarding Titan material properties. Overall, observations of Titan point to a world pervasively influenced by fluvial processes, for which appropriate terrestrial analogs and formulations may provide insight.


Journal of Geophysical Research | 2011

Bed load transport in bedrock rivers: The role of sediment cover in grain entrainment, translation, and deposition

Rebecca A. Hodge; Trevor B. Hoey; Leonard S. Sklar

[1] Bedrock rivers exert a critical control over landscape evolution, yet little is known about the sediment transport processes that affect their incision. We present theoretical analyses and field data that demonstrate how grain entrainment, translation and deposition are affected by the degree of sediment cover in a bedrock channel. Theoretical considerations of grain entrainment mechanics and sediment continuity each demonstrate that areas of exposed bedrock and thin sediment depths cause sediment transport to be size-independent, albeit excluding extreme grain sizes. We report gravel and cobble magnetic tracer data from three rivers with contrasting sediment cover: the bedrock River Calder (20% cover), the bedrock South Fork Eel River (80%) and the alluvial Allt Dubhaig (100%). These data sets show that: 1) transport distances in the River Calder are controlled by sediment patch location, whereas in the other rivers transport distances are described by gamma distributions representing local dispersion; 2) River Calder transport distances are size-independent across all recorded shear stresses, whereas the other rivers display size-selectivity; 3) River Calder tracers are entrained at a dimensionless shear stress of 0.038, which is relatively low compared to alluvial rivers; and, 4) virtual grain velocities in the River Calder are higher than in a comparable reach of the Allt Dubhaig. These contrasts result from differences in the thicknesses and spatial distribution of sediment in the three rivers, and support the theoretical analysis. Sediment processes in bedrock rivers systematically vary along a continuum between bedrock and alluvial end-members. Citation: Hodge, R. A., T. B. Hoey, and L. S. Sklar (2011), Bed load transport in bedrock rivers: The role of sediment cover in grain entrainment, translation, and deposition, J. Geophys. Res., 116, F04028, doi:10.1029/2011JF002032.


Water Resources Research | 2012

Experimental evidence for the effect of hydrographs on sediment pulse dynamics in gravel‐bedded rivers

R. P. Humphries; Jeremy G. Venditti; Leonard S. Sklar; John K. Wooster

[1] Gravel augmentation is a river restoration technique applied to channels downstream of dams where size-selective transport and lack of gravel resupply have created armored, relatively immobile channel beds. Augmentation sediment pulses rely on flow releases to move the material downstream and create conditions conducive to salmon spawning and rearing. Yet how sediment pulses respond to flow releases is often unknown. Here we explore how three types of dam releases (constant flow, small hydrograph, and large hydrograph) impact sediment transport and pulse behavior (translation and dispersion) in a channel with forced bar-pool morphology. We use the term sediment ‘‘pulse’’ generically to refer to the sediment introduced to the channel, the zone of pronounced bed material transport that it causes, and the sediment wave that may form in the channel from the additional sediment supply, which can include input sediment and bed material. In our experiments, we held the volume of water released constant, which is equivalent to holding the cost of purchasing a water volume constant in a stream restoration project. The sediment pulses had the same grain size as the bed material in the channel. We found that a constant flow 60% greater than the discharge required to initiate sediment motion caused a mixture of translation and dispersion of the sediment pulse. A broad crested hydrograph with a peak flow 2.5 times the discharge required for entrainment caused pulse dispersion, while a more peaked hydrograph >3 times the entrainment threshold discharge caused pulse dispersion with some translation. The hydrographs produced a well-defined clockwise hysteresis effecting sediment transport, as is often observed for fine-sediment transport and transportlimited gravel bed rivers. The results imply a rational basis for design of water releases associated with gravel augmentation that is directly linked to the desired sediment behavior.

Collaboration


Dive into the Leonard S. Sklar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

John K. Wooster

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dino Bellugi

University of California

View shared research outputs
Top Co-Authors

Avatar

Peter A. Nelson

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter J. Polito

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

J. Fadde

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge