Leonard T. Nguyen
University of Calgary
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Leonard T. Nguyen.
Trends in Biotechnology | 2011
Leonard T. Nguyen; Evan F. Haney; Hans J. Vogel
Antimicrobial peptides (AMPs) are an integral part of the innate immune system that protect a host from invading pathogenic bacteria. To help overcome the problem of antimicrobial resistance, cationic AMPs are currently being considered as potential alternatives for antibiotics. Although extremely variable in length, amino acid composition and secondary structure, all peptides can adopt a distinct membrane-bound amphipathic conformation. Recent studies demonstrate that they achieve their antimicrobial activity by disrupting various key cellular processes. Some peptides can even use multiple mechanisms. Moreover, several intact proteins or protein fragments are now being shown to have inherent antimicrobial activity. A better understanding of the structure-activity relationships of AMPs is required to facilitate the rational design of novel antimicrobial agents.
PLOS ONE | 2010
Leonard T. Nguyen; Johnny K. Chau; Nicole A. Perry; Leonie de Boer; Sebastian A. J. Zaat; Hans J. Vogel
Background Several short antimicrobial peptides that are rich in tryptophan and arginine residues were designed with a series of simple modifications such as end capping and cyclization. The two sets of hexapeptides are based on the Trp- and Arg-rich primary sequences from the “antimicrobial centre” of bovine lactoferricin as well as an antimicrobial sequence obtained through the screening of a hexapeptide combinatorial library. Methodology/Principal Findings HPLC, mass spectrometry and antimicrobial assays were carried out to explore the consequences of the modifications on the serum stability and microbicidal activity of the peptides. The results show that C-terminal amidation increases the antimicrobial activity but that it makes little difference to its proteolytic degradation in human serum. On the other hand, N-terminal acetylation decreases the peptide activities but significantly increases their protease resistance. Peptide cyclization of the hexameric peptides was found to be highly effective for both serum stability and antimicrobial activity. However the two cyclization strategies employed have different effects, with disulfide cyclization resulting in more active peptides while backbone cyclization results in more proteolytically stable peptides. However, the benefit of backbone cyclization did not extend to longer 11-mer peptides derived from the same region of lactoferricin. Mass spectrometry data support the serum stability assay results and allowed us to determine preferred proteolysis sites in the peptides. Furthermore, isothermal titration calorimetry experiments showed that the peptides all had weak interactions with albumin, the most abundant protein in human serum. Conclusions/Significance Taken together, the results provide insight into the behavior of the peptides in human serum and will therefore aid in advancing antimicrobial peptide design towards systemic applications.
Biochimica et Biophysica Acta | 2008
Valery Andrushchenko; Mohammed H. Aarabi; Leonard T. Nguyen; Elmar J. Prenner; Hans J. Vogel
Tritrpticin and indolicidin are short 13-residue tryptophan-rich antimicrobial peptides that hold potential as future alternatives for antibiotics. Isothermal titration calorimetry (ITC) has been applied as the main tool in this study to investigate the thermodynamics of the interaction of these two cathelicidin peptides as well as five tritrpticin analogs with large unilamellar vesicles (LUVs), representing model and natural anionic membranes. The anionic LUVs were composed of (a) 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPE/POPG) (7:3) and (b) natural E. coli polar lipid extract. 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) was used to make model zwitterionic membranes. Binding isotherms were obtained to characterize the antimicrobial peptide binding to the LUVs, which then allowed for calculation of the thermodynamic parameters of the interaction. All peptides exhibited substantially stronger binding to anionic POPE/POPG and E. coli membrane systems than to the zwitterionic POPC system due to strong electrostatic attractions between the highly positively charged peptides and the negatively charged membrane surface, and results with tritrpticin derivatives further revealed the effects of various amino acid substitutions on membrane binding. No significant improvement was observed upon increasing the Tritrp peptide charge from +4 to +5. Replacement of Arg residues with Lys did not substantially change peptide binding to anionic vesicles but moderately decreased the binding to zwitterionic LUVs. Pro to Ala substitutions in tritrpticin, allowing the peptide to adopt an alpha-helical structure, resulted in a significant increase of the binding to both anionic and zwitterionic vesicles and therefore reduced the selectivity for bacterial and mammalian membranes. In contrast, substitution of Trp with other aromatic amino acids significantly decreased the peptides ability to bind to anionic LUVs and essentially eliminated binding to zwitterionic LUVs. The ITC results were consistent with the outcome of fluorescence spectroscopy membrane binding and perturbation studies. Overall, our work showed that a natural E. coli polar lipid extract as a bacterial membrane model was advantageous compared to the simpler and more widely used POPE/POPG lipid system.
Biochimica et Biophysica Acta | 2011
Leonard T. Nguyen; Leonie de Boer; Sebastian A. J. Zaat; Hans J. Vogel
The positively charged side chains of cationic antimicrobial peptides are generally thought to provide the initial long-range electrostatic attractive forces that guide them towards the negatively charged bacterial membranes. Peptide analogs were designed to examine the role of the four Arg side chains in the cathelicidin peptide tritrpticin (VRRFPWWWPFLRR). The analogs include several noncoded Arg and Lys derivatives that offer small variations in side chain length and methylation state. The peptides were tested for bactericidal and hemolytic activities, and their membrane insertion and permeabilization properties were characterized by leakage assays and fluorescence spectroscopy. A net charge of +5 for most of the analogs maintains their high antimicrobial activity and directs them towards preferential insertion into model bacterial membrane systems with a similar extent of burial of the Trp side chains. However the peptides exhibit significant functional differences. Analogs with methylated cationic side chains cause lower levels of membrane leakage and are associated with lower hemolytic activities, making them potentially attractive pharmaceutical candidates. Analogs containing the Arg guanidinium groups cause more membrane disruption than those containing the Lys amino groups. Peptides in the latter group with shorter side chains have increased membrane activity and conversely, elongating the Arg residue causes slightly higher membrane activity. Altogether, the potential for strong hydrogen bonding between the four positive Arg side chains with the phospholipid head groups seems to be a determinant for the membrane disruptive properties of tritrpticin and many related cationic antimicrobial peptides.
Biochimica et Biophysica Acta | 2010
Leonard T. Nguyen; David I. Chan; Laura Boszhard; Sebastian A. J. Zaat; Hans J. Vogel
Recent reports which show that several chemokines can act as direct microbicidal agents have drawn renewed attention to these chemotactic signalling proteins. Here we present a structure-function analysis of peptides derived from the human chemokines macrophage inflammatory protein-3alpha (MIP-3alpha/CCL20), interleukin-8 (IL-8), neutrophil activating protein-2 (NAP-2) and thrombocidin-1 (TC-1). These peptides encompass the C-terminal alpha-helices of these chemokines, which have been suggested to be important for the direct antimicrobial activities. Far-UV CD spectroscopy showed that the peptides are unstructured in aqueous solution and that a membrane mimetic solvent is required to induce a helical secondary structure. A co-solvent mixture was used to determine solution structures of the peptides by two-dimensional (1)H-NMR spectroscopy. The highly cationic peptide, MIP-3alpha(51-70), had the most pronounced antimicrobial activity and displayed an amphipathic structure. A shorter version of this peptide, MIP-3alpha(59-70), remained antimicrobial but its structure and mechanism of action were unlike that of the former peptide. The NAP-2 and TC-1 proteins differ in their sequences only by the deletion of two C-terminal residues in TC-1, but intact TC-1 is a very potent antimicrobial while NAP-2 is inactive. The corresponding C-terminal peptides, NAP-2(50-70) and TC-1(50-68), had very limited and no bactericidal activity, respectively. This suggests that other regions of TC-1 contribute to its bactericidal activity. Altogether, this work provides a rational structural basis for the biological activities of these peptides and proteins and highlights the importance of experimental characterization of peptide fragments as distinct entities because their activities and structural properties may differ substantially from their parent proteins.
Journal of Biological Chemistry | 2011
Paulus H. S. Kwakman; Jeroen Krijgsveld; Leonie de Boer; Leonard T. Nguyen; Laura Boszhard; Jocelyne Vreede; Henk L. Dekker; Dave Speijer; Jan W. Drijfhout; Anje A. te Velde; Wim Crielaard; Hans J. Vogel; Christina M. J. E. Vandenbroucke-Grauls; Sebastian A. J. Zaat
Background: The properties required for antimicrobial activity of chemokines are unclear. Results: Native thrombocidin-1 requires a three-dimensional positive patch for activity, but unfolded thrombocidin-1 is active through the N-terminal linear peptide regions. Conclusion: Native thrombocidin-1 and unfolded thrombocidin-1 exert activity via distinct structural elements. Significance: Folded and unfolded antimicrobial chemokines can exert activity through different structural elements. Chemokines (chemotactic cytokines) can have direct antimicrobial activity, which is apparently related to the presence of a distinct positively charged patch on the surface. However, chemokines can retain antimicrobial activity upon linearization despite the loss of their positive patch, thus questioning the importance of this patch for activity. Thrombocidin-1 (TC-1) is a microbicidal protein isolated from human blood platelets. TC-1 only differs from the chemokine NAP-2/CXCL7 by a two-amino acid C-terminal deletion, but this truncation is crucial for antimicrobial activity. We assessed the structure-activity relationship for antimicrobial activity of TC-1. Reduction of the charge of the TC-1-positive patch by replacing lysine 17 with alanine reduced the activity against bacteria and almost abolished activity against the yeast Candida albicans. Conversely, augmentation of the positive patch by increasing charge density or size resulted in a 2–3-fold increased activity against Staphylococcus aureus, Escherichia coli, and Bacillus subtilis but did not substantially affect activity against C. albicans. Reduction of TC-1 resulted in loss of the folded conformation, but this disruption of the positive patch did not affect antimicrobial activity. Using overlapping 15-mer synthetic peptides, we demonstrate peptides corresponding to the N-terminal part of TC-1 to have similar antimicrobial activity as intact TC-1. Although we demonstrate that the positive patch is essential for activity of folded TC-1, unfolded TC-1 retained antimicrobial activity despite the absence of a positive patch. This activity is probably exerted by a linear peptide stretch in the N-terminal part of the molecule. We conclude that intact TC-1 and unfolded TC-1 exert antimicrobial activity via distinct structural elements.
Antimicrobial Agents and Chemotherapy | 2011
Leonard T. Nguyen; Paulus H. S. Kwakman; David I. Chan; Zhihong Liu; Leonie de Boer; Sebastian A. J. Zaat; Hans J. Vogel
ABSTRACT The platelet chemokines neutrophil-activating peptide-2 (NAP-2) and thrombocidin-1 (TC-1) differ by only two amino acids at their carboxy-terminal ends. Nevertheless, they display a significant difference in their direct antimicrobial activities, with the longer NAP-2 being inactive and TC-1 being active. In an attempt to rationalize this difference in activity, we studied the structure and the dynamics of both proteins by nuclear magnetic resonance (NMR) spectroscopy. Using 15N isotope-labeled protein, we confirmed that the two monomeric proteins essentially have the same overall structure in aqueous solution. However, NMR relaxation measurements provided evidence that the negatively charged carboxy-terminal residues of NAP-2 experience a restricted motion, whereas the carboxy-terminal end of TC-1 moves in an unrestricted manner. The same behavior was also seen in molecular dynamic simulations of both proteins. Detailed analysis of the protein motions through model-free analysis, as well as a determination of their overall correlation times, provided evidence for the existence of a monomer-dimer equilibrium in solution, which seemed to be more prevalent for TC-1. This finding was supported by diffusion NMR experiments. Dimerization generates a larger cationic surface area that would increase the antimicrobial activities of these chemokines. Moreover, these data also show that the negatively charged carboxy-terminal end of NAP-2 (which is absent in TC-1) folds back over part of the positively charged helical region of the protein and, in doing so, interferes with the direct antimicrobial activity.
Journal of Peptide Science | 2012
Veronika Tørfoss; Johan Isaksson; Dominik Ausbacher; Bjørn-Olav Brandsdal; Gøril Eide Flaten; Trude Anderssen; Cristiane de A. Cavalcanti-Jacobsen; Martina Havelkova; Leonard T. Nguyen; Hans J. Vogel; Morten B. Strøm
We have recently reported a series of synthetic anticancer heptapeptides (H‐KKWβ2,2WKK‐NH2) containing a central achiral and lipophilic β2,2‐amino acid that display low toxicity against non‐malignant cells and high proteolytic stability. In the present study, we have further investigated the effects of increasing the rigidity and amphipathicity of two of our lead heptapeptides by preparing a series of seven to five residue cyclic peptides containing the two most promising β2,2‐amino acid derivatives as part of the central lipophilic core. The peptides were tested for anticancer activity against human Burkitts lymphoma (Ramos cells), haemolytic activity against human red blood cells (RBC) and cytotoxicity against healthy human lung fibroblast cells (MRC‐5). The results demonstrated a considerable increase in anticancer potency following head‐to‐tail peptide cyclization, especially for the shortest derivatives lacking a tryptophan residue. High‐resolution NMR studies and molecular dynamics simulations together with an annexin‐V‐FITC and propidium iodide fluorescent assay showed that the peptides had a membrane disruptive mode of action and that the more potent peptides penetrated deeper into the lipid bilayer. The need for new anticancer drugs with novel modes of action is demanding, and development of short cyclic anticancer peptides with an overall rigidified and amphipathic structure is a promising approach to new anticancer agents. Copyright
Frontiers in Immunology | 2012
Leonard T. Nguyen; Hans J. Vogel
Chemokines are best known as signaling proteins in the immune system. Recently however, a large number of human chemokines have been shown to exert direct antimicrobial activity. This moonlighting activity appears to be related to the net high positive charge of these immune signaling proteins. Chemokines can be divided into distinct structural elements and some of these have been studied as isolated peptide fragments that can have their own antimicrobial activity. Such peptides often encompass the α-helical region found at the C-terminal end of the parent chemokines, which, similar to other antimicrobial peptides, adopt a well-defined membrane-bound amphipathic structure. Because of their relatively small size, intact chemokines can be studied effectively by NMR spectroscopy to examine their structures in solution. In addition, NMR relaxation experiments of intact chemokines can provide detailed information about the intrinsic dynamic behavior; such analyses have helped for example to understand the activity of TC-1, an antimicrobial variant of CXCL7/NAP-2. With chemokine dimerization and oligomerization influencing their functional properties, the use of NMR diffusion experiments can provide information about monomer-dimer equilibria in solution. Furthermore, NMR chemical shift perturbation experiments can be used to map out the interface between self-associating subunits. Moreover, the unusual case of XCL1/lymphotactin presents a chemokine that can interconvert between two distinct folds in solution, both of which have been elucidated. Finally, recent advances have allowed for the determination of the structures of chemokines in complex with glycosaminoglycans, a process that could interfere with their antimicrobial activity. Taken together, these studies highlight several different structural facets that contribute to the way in which chemokines exert their direct microbicidal actions.
Biochimica et Biophysica Acta | 2015
Mauricio Arias; Katharine V. Jensen; Leonard T. Nguyen; Douglas G. Storey; Hans J. Vogel
Tritrpticin is an antimicrobial peptide with a strong microbicidal activity against Gram-positive and Gram-negative bacteria as well as fungi. The 13-residue peptide is essentially symmetrical and possesses a unique cluster of three Trp residues near the center of its amino acid sequence. The mechanism of action of tritrpticin is believed to involve permeabilization of the cytoplasmic membrane of susceptible bacteria. However it has been suggested that intracellular targets may also play a role in its antimicrobial activity. In this work the mechanism of action of several tritrpticin derivatives was studied through substitution of the three Trp residues with 5-hydroxy-tryptophan (5OHW), a naturally occurring non-ribosomal amino acid. Although it is more polar, 5OHW preserves many of the biophysical and biochemical properties of Trp, allowing the use of fluorescence spectroscopy and NMR techniques to study the interaction of the modified peptides with membrane mimetics. Single or triple 5OHW substitution did not have a large effect on the MIC of the parent peptide against Escherichia coli and Bacillus subtilis. However, the mechanism of action was altered by simultaneously replacing all three Trp with 5OHW. Our results suggest that the inner membrane of Gram-negative bacteria did not constitute the main target of this particular tritrpticin derivative. Since the addition of a hydroxyl group to the indole motif of the Trp residue was able to modify the mechanism of action of the peptides, our data confirm the importance of the Trp cluster in tritrpticin. This work also shows that 5OHW constitutes a new probe to modulate the antimicrobial activity and mechanism of action of other Trp-rich antimicrobial peptides.