Leonardo Erijman
National Scientific and Technical Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Leonardo Erijman.
Water Research | 2013
Federico M. Ibarbalz; Eva L.M. Figuerola; Leonardo Erijman
Biological degradation of domestic and industrial wastewater by activated sludge depends on a common process of separation of the diverse self-assembled and self-sustained microbial flocs from the treated wastewater. Previous surveys of bacterial communities indicated the presence of a common core of bacterial phyla in municipal activated sludge, an observation consistent with the concept of ecological coherence of high taxonomic ranks. The aim of this work was to test whether this critical feature brings about a common pattern of abundance distribution of high bacterial taxa in industrial and domestic activated sludge, and to relate the bacterial community structure of industrial activated sludge with relevant operational parameters. We have applied 454 pyrosequencing of 16S rRNA genes to evaluate bacterial communities in full-scale biological wastewater treatment plants sampled at different times, including seven systems treating wastewater from different industries and one plant that treats domestic wastewater, and compared our datasets with the data from municipal wastewater treatment plants obtained by three different laboratories. We observed that each industrial activated sludge system exhibited a unique bacterial community composition, which is clearly distinct from the common profile of bacterial phyla or classes observed in municipal plants. The influence of process parameters on the bacterial community structure was evaluated using constrained analysis of principal coordinates (CAP). Part of the differences in the bacterial community structure between industrial wastewater treatment systems were explained by dissolved oxygen and pH. Despite the ecological relevance of floc formation for the assembly of bacterial communities in activated sludge, the wastewater characteristics are likely to be the major determinant that drives bacterial composition at high taxonomic ranks.
PLOS ONE | 2012
Eva L.M. Figuerola; Leandro D. Guerrero; Silvina M. Rosa; Leandro Simonetti; Matias Ezequiel Duval; Juan Alberto Galantini; José Camilo Bedano; Luis Gabriel Wall; Leonardo Erijman
The rise in the world demand for food poses a challenge to our ability to sustain soil fertility and sustainability. The increasing use of no-till agriculture, adopted in many areas of the world as an alternative to conventional farming, may contribute to reduce the erosion of soils and the increase in the soil carbon pool. However, the advantages of no-till agriculture are jeopardized when its use is linked to the expansion of crop monoculture. The aim of this study was to survey bacterial communities to find indicators of soil quality related to contrasting agriculture management in soils under no-till farming. Four sites in production agriculture, with different soil properties, situated across a west-east transect in the most productive region in the Argentinean pampas, were taken as the basis for replication. Working definitions of Good no-till Agricultural Practices (GAP) and Poor no-till Agricultural Practices (PAP) were adopted for two distinct scenarios in terms of crop rotation, fertilization, agrochemicals use and pest control. Non-cultivated soils nearby the agricultural sites were taken as additional control treatments. Tag-encoded pyrosequencing was used to deeply sample the 16S rRNA gene from bacteria residing in soils corresponding to the three treatments at the four locations. Although bacterial communities as a whole appeared to be structured chiefly by a marked biogeographic provincialism, the distribution of a few taxa was shaped as well by environmental conditions related to agricultural management practices. A statistically supported approach was used to define candidates for management-indicator organisms, subsequently validated using quantitative PCR. We suggest that the ratio between the normalized abundance of a selected group of bacteria within the GP1 group of the phylum Acidobacteria and the genus Rubellimicrobium of the Alphaproteobacteria may serve as a potential management-indicator to discriminate between sustainable vs. non-sustainable agricultural practices in the Pampa region.
Microbial Ecology | 2011
Joaquín M. Ayarza; Leonardo Erijman
Understanding the processes that generate patterns of community structure is a central focus of ecological research. With that aim, we manipulated the structure of bacterial activated sludge to test the influence of the species richness and composition of bacterial communities on the dynamics of activated sludge floc assembly in lab-scale bioreactors. Bacterial community structure was analyzed using denaturing gradient gel electrophoresis of RT-PCR amplified 16S rRNA. Fingerprinting of four parallel reactors, started with the same source communities added in different proportions, converged to patterns that were more similar than expected by chance, suggesting a deterministic selection in floc development. Evidence for neutral dynamics was suggested by the dependence of the rate of replacement of species (bacterial taxa–time relationships) on the number of available species in the source community. Further indication of stochastic dynamics was obtained by the application of the Sloan neutral model for prokaryotes. The fitting of the observed data to the model predictions revealed that the importance of the stochastic component increased with the size of the reservoir of species richness from which the community is drawn. Taken together, the results illustrate how both neutral and deterministic dynamics operate simultaneously in the assembly of the bacterial floc and show that the balance of the two depends on the richness of the source community.
Journal of Hazardous Materials | 2010
Eva L.M. Figuerola; Leonardo Erijman
We have investigated bacterial populations relevant to nitrification in a full-scale activated sludge plant receiving wastewater from a petroleum refinery showing unstable nitrification. Inhibition of ammonia oxidation was related to phenol concentration according to a model of non-competitive inhibition. While the number of ammonia-oxidizing bacteria (AOB) did not correlate with nitrification performance, the total number of nitrite-oxidizing bacteria (NOB) dropped considerably during periods of nitrite accumulation or no nitrification. Diversity of nitrifiers in the sludge of the full-scale facility was examined at a time of full nitrification with the construction of clone libraries of ammonia monooxygenase (amoA) gene and of the 16S rRNA gene of NOB. Nucleotide sequences of amoA gene belonged to one dominant population, associated with Nitrosomonas europaea, and to a minor population related to the Nitrosomonas nitrosa lineage. The majority of sequences retrieved in the NOB-like clone library also clustered within a single operational taxonomic unit. The high dominance of Nitrobacter over Nitrospira and the low diversity of nitrifying bacteria observed in this wastewater treatment plant might account for the increased risk of failure in the presence of disturbances.
PLOS ONE | 2014
Federico M. Ibarbalz; María Victoria Pérez; Eva L.M. Figuerola; Leonardo Erijman
The performance of two sets of primers targeting variable regions of the 16S rRNA gene V1–V3 and V4 was compared in their ability to describe changes of bacterial diversity and temporal turnover in full-scale activated sludge. Duplicate sets of high-throughput amplicon sequencing data of the two 16S rRNA regions shared a collection of core taxa that were observed across a series of twelve monthly samples, although the relative abundance of each taxon was substantially different between regions. A case in point was the changes in the relative abundance of filamentous bacteria Thiothrix, which caused a large effect on diversity indices, but only in the V1–V3 data set. Yet the relative abundance of Thiothrix in the amplicon sequencing data from both regions correlated with the estimation of its abundance determined using fluorescence in situ hybridization. In nonmetric multidimensional analysis samples were distributed along the first ordination axis according to the sequenced region rather than according to sample identities. The dynamics of microbial communities indicated that V1–V3 and the V4 regions of the 16S rRNA gene yielded comparable patterns of: 1) the changes occurring within the communities along fixed time intervals, 2) the slow turnover of activated sludge communities and 3) the rate of species replacement calculated from the taxa–time relationships. The temperature was the only operational variable that showed significant correlation with the composition of bacterial communities over time for the sets of data obtained with both pairs of primers. In conclusion, we show that despite the bias introduced by amplicon sequencing, the variable regions V1–V3 and V4 can be confidently used for the quantitative assessment of bacterial community dynamics, and provide a proper qualitative account of general taxa in the community, especially when the data are obtained over a convenient time window rather than at a single time point.
Environmental Microbiology | 2015
Eva L.M. Figuerola; Leandro D. Guerrero; Dominique Türkowsky; Luis Gabriel Wall; Leonardo Erijman
The goal of this study was to investigate the spatial turnover of soil bacterial communities in response to environmental changes introduced by the practices of soybean monoculture or crop rotations, relative to grassland soils. Amplicon sequencing of the 16S rRNA gene was used to analyse bacterial diversity in producer fields through three successive cropping cycles within one and a half years, across a regional scale of the Argentinean Pampas. Unlike local diversity, which was not significantly affected by land use type, agricultural management had a strong influence on β-diversity patterns. Distributions of pairwise distances between all soils samples under soybean monoculture had significantly lower β-diversity and narrower breadth compared with distributions of pairwise distances between soils managed with crop rotation. Interestingly, good agricultural practices had similar degree of β-diversity as natural grasslands. The higher phylogenetic relatedness of bacterial communities in soils under monoculture across the region was likely determined by the observed loss of endemic species, and affected mostly to phyla with low regional diversity, such as Acidobacteria, Verrucomicrobia and the candidates phyla SPAM and WS3. These results suggest that the implementation of good agricultural practices, including crop rotation, may be critical for the long-term conservation of soil biodiversity.
Bioresource Technology | 2012
Natalia J. Sacco; Eva L.M. Figuerola; Gabriela Pataccini; Maria C. Bonetto; Leonardo Erijman; Eduardo Cortón
This paper presents data obtained using an indigenous microbial community contained in anaerobic sediments (mud) collected from the shore of the Río de La Plata River (South America). After the sedimentary microbial fuel cells were assembled the evolution of current and power vs. time was studied. Two types of commercially available graphite materials were used as electrodes, which differ mainly in shape and size. In some experiments, an external carbon source (acetate) increased the power generation rate. The maximum power density observed in the aforementioned condition was 19.57 ± 0.35 and 8.72 ± 1.39 mW/m(2) using rod and graphite disk electrodes, respectively. The better performance of the rod electrodes can be explained, at least in part, by an enhanced rate of mass transport by radial diffusion. DGGE fingerprints were used to study the electrogenic community growing over the electrodes.
FEMS Microbiology Ecology | 2010
Laura A. Basile; Leonardo Erijman
To better understand how the composition of bacterial communities changes in response to different environmental conditions, we examined the influence of increasing phenol load on the distribution of the protein-coding functional gene of the largest subunit of phenol hydroxylase (LmPH) and of the 16S rRNA gene in lab-scale activated sludge reactors. LmPH diversity was assessed initially from a total of 124 clone sequences retrieved from two reactors exposed to a low (0.25 g L(-1)) and a high (2.5 g L(-1)) phenol concentration. The quantitative changes in the concentration of the eight detected genotypes accompanied changes in the phenol degradation rates, indicating a community structure-function relationship. Nonmetric dimensional analysis showed that LmPH genotypes and the denaturing gradient gel electrophoresis banding patterns clustered together by phenol concentration, rather than by reactor identity. Seven isolates, representing cultivated strains of each of the observed LmPH genotypes, exhibited a rather narrow range of physiological diversity, in terms of the growth rate and the kinetic parameters of the phenol-degrading activity. We suggest that lab-scale reactors support many ecological niches, which allow the maintenance of a high diversity of ecotypes through varying concentrations of phenol, but the ability of particular strains to become dominant members of the community under the different environmental conditions cannot be predicted easily solely from their phenol-degrading properties.
Genome Announcements | 2014
Joaquín M. Ayarza; Eva L.M. Figuerola; Leonardo Erijman
ABSTRACT The genus Sediminibacterium comprises species present in diverse natural and engineered environments. Here, we report for the first time the genome sequences of the type strain Sediminibacterium salmoneum NJ-44 (NBRC 103935) and Sediminibacterium sp. strain C3 (BNM541), isolated from activated sludge, a valuable model for the study of substrate-dependent autoaggregation.
Journal of Basic Microbiology | 2015
Joaquín M. Ayarza; María Agustina Mazzella; Leonardo Erijman
Aggregation is a common trait of bacteria in natural and engineered biological systems. Microbial aggregates, such as flocs, granules, and biofilms, are spatially heterogeneous environments. It is generally observed that by growing under aggregated conditions bacteria respond and adapt to environmental stress better than free‐swimming bacteria of the same species. We performed a proteomic analysis of a strain of Sediminibacterium, isolated from activated sludge, which grew planktonically in diluted culture media and in an aggregated form in media containing a high concentration of organic substrate. Auto‐aggregation was also observed in the presence of pyruvate in dilute media. Expression of a number of stress‐related proteins significantly increased under planktonic growth in comparison to aggregate growth. The upregulated proteins, identified by MALDI‐TOF mass spectrometry, were two isoforms of a protein belonging to the universal stress family (UspA), a thioredoxin‐disulfide reductase, the Campylobacter jejuni orthologue transcriptional regulator (Cj1172c), and the CocE/NonD hydrolase. We conclude that Sediminibaterium sp. C3 growth is stressed under planktonic conditions and that aggregation induced by pyruvate protects the bacteria against oxidative stress.