Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leonardo G. Cohen is active.

Publication


Featured researches published by Leonardo G. Cohen.


Brain Stimulation | 2008

Transcranial direct current stimulation: State of the art 2008

Michael A. Nitsche; Leonardo G. Cohen; Eric M. Wassermann; Alberto Priori; Nicolas Lang; Andrea Antal; Walter Paulus; Friedhelm C. Hummel; Paulo S. Boggio; Felipe Fregni; Alvaro Pascual-Leone

Effects of weak electrical currents on brain and neuronal function were first described decades ago. Recently, DC polarization of the brain was reintroduced as a noninvasive technique to alter cortical activity in humans. Beyond this, transcranial direct current stimulation (tDCS) of different cortical areas has been shown, in various studies, to result in modifications of perceptual, cognitive, and behavioral functions. Moreover, preliminary data suggest that it can induce beneficial effects in brain disorders. Brain stimulation with weak direct currents is a promising tool in human neuroscience and neurobehavioral research. To facilitate and standardize future tDCS studies, we offer this overview of the state of the art for tDCS.


Annals of Neurology | 2004

Influence of interhemispheric interactions on motor function in chronic stroke

Nagako Murase; Julie Duque; Riccardo Mazzocchio; Leonardo G. Cohen

In patients with chronic stroke, the primary motor cortex of the intact hemisphere (M1intact hemisphere) may influence functional recovery, possibly through transcallosal effects exerted over M1 in the lesioned hemisphere (M1lesioned hemisphere). Here, we studied interhemispheric inhibition (IHI) between M1intact hemisphere and M1lesioned hemisphere in the process of generation of a voluntary movement by the paretic hand in patients with chronic subcortical stroke and in healthy volunteers. IHI was evaluated in both hands preceding the onset of unilateral voluntary index finger movements (paretic hand in patients, right hand in controls) in a simple reaction time paradigm. IHI at rest and shortly after the Go signal were comparable in patients and controls. Closer to movement onset, IHI targeting the moving index finger turned into facilitation in controls but remained deep in patients, a finding that correlated with poor motor performance. These results document an abnormally high interhemispheric inhibitory drive from M1intact hemisphere to M1lesioned hemisphere in the process of generation of a voluntary movement by the paretic hand. It is conceivable that this abnormality could adversely influence motor recovery in some patients with subcortical stroke, an interpretation consistent with models of interhemispheric competition in motor and sensory systems.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation

Janine Reis; Heidi M. Schambra; Leonardo G. Cohen; Ethan R. Buch; Brita Fritsch; Eric Zarahn; Pablo Celnik; John W. Krakauer

Motor skills can take weeks to months to acquire and can diminish over time in the absence of continued practice. Thus, strategies that enhance skill acquisition or retention are of great scientific and practical interest. Here we investigated the effect of noninvasive cortical stimulation on the extended time course of learning a novel and challenging motor skill task. A skill measure was chosen to reflect shifts in the tasks speed–accuracy tradeoff function (SAF), which prevented us from falsely interpreting variations in position along an unchanged SAF as a change in skill. Subjects practiced over 5 consecutive days while receiving transcranial direct current stimulation (tDCS) over the primary motor cortex (M1). Using the skill measure, we assessed the impact of anodal (relative to sham) tDCS on both within-day (online) and between-day (offline) effects and on the rate of forgetting during a 3-month follow-up (long-term retention). There was greater total (online plus offline) skill acquisition with anodal tDCS compared to sham, which was mediated through a selective enhancement of offline effects. Anodal tDCS did not change the rate of forgetting relative to sham across the 3-month follow-up period, and consequently the skill measure remained greater with anodal tDCS at 3 months. This prolonged enhancement may hold promise for the rehabilitation of brain injury. Furthermore, these findings support the existence of a consolidation mechanism, susceptible to anodal tDCS, which contributes to offline effects but not to online effects or long-term retention.


Nature | 1997

Functional relevance of cross-modal plasticity in blind humans.

Leonardo G. Cohen; Pablo Celnik; Alvaro Pascual-Leone; Brian Corwell; Lala Faiz; James M. Dambrosia; Manabu Honda; Norihiro Sadato; Christian Gerloff; M. Dolores Catalá; Mark Hallett

Functional imaging studies of people who were blind from an early age have revealed that their primary visual cortex can be activated by Braille reading and other tactile discrimination tasks. Other studies have also shown that visual cortical areas can be activated by somatosensory input in blind subjects but not those with sight. The significance of this cross-modal plasticity is unclear, however, as it is not known whether the visual cortex can process somatosensory information in a functionally relevant way. To address this issue, we used transcranial magnetic stimulation to disrupt the function of different cortical areas in people who were blind from an early age as they identified Braille or embossed Roman letters. Transient stimulation of the occipital (visual) cortex induced errors in both tasks and distorted the tactile perceptions of blind subjects. In contrast, occipital stimulation had no effect on tactile performance in normal-sighted subjects, whereas similar stimulation is known to disrupt their visual performance. We conclude that blindness from an early age can cause the visual cortex to be recruited to a role in somatosensory processing. We propose that this cross-modal plasticity may account in part for the superior tactile perceptual abilities of blind subjects.


Neuron | 2010

Direct Current Stimulation Promotes BDNF-Dependent Synaptic Plasticity: Potential Implications for Motor Learning

Brita Fritsch; Janine Reis; Keri Martinowich; Heidi M. Schambra; Yuanyuan Ji; Leonardo G. Cohen; Bai Lu

Despite its increasing use in experimental and clinical settings, the cellular and molecular mechanisms underlying transcranial direct current stimulation (tDCS) remain unknown. Anodal tDCS applied to the human motor cortex (M1) improves motor skill learning. Here, we demonstrate in mouse M1 slices that DCS induces a long-lasting synaptic potentiation (DCS-LTP), which is polarity specific, NMDA receptor dependent, and requires coupling of DCS with repetitive low-frequency synaptic activation (LFS). Combined DCS and LFS enhance BDNF-secretion and TrkB activation, and DCS-LTP is absent in BDNF and TrkB mutant mice, suggesting that BDNF is a key mediator of this phenomenon. Moreover, the BDNF val66met polymorphism known to partially affect activity-dependent BDNF secretion impairs motor skill acquisition in humans and mice. Motor learning is enhanced by anodal tDCS, as long as activity-dependent BDNF secretion is in place. We propose that tDCS may improve motor skill learning through augmentation of synaptic plasticity that requires BDNF secretion and TrkB activation within M1.


Neuroscience | 2002

Nervous system reorganization following injury

Robert Chen; Leonardo G. Cohen; Mark Hallett

Contrary to the classical view of a pre-determined wiring pattern, there is considerable evidence that cortical representation of body parts is continuously modulated in response to activity, behavior and skill acquisition. Both animal and human studies showed that following injury of the peripheral nervous system such as nerve injury or amputation, the somatosensory cortex that responded to the deafferented body parts become responsive to neighboring body parts. Similarly, there is expansion of the motor representation of the stump area following amputation. Reorganization of the sensory and motor systems following peripheral injury occurs in multiple levels including the spinal cord, brainstem, thalamus and cortex. In early-blind subjects, the occipital cortex plays an important role in Braille reading, suggesting that there is cross-modal plasticity. Functional recovery frequently occurs following a CNS injury such as stroke. Motor recovery from stroke may be associated with the adjacent cortical areas taking over the function of the damaged areas or utilization of alternative motor pathways. The ipsilateral motor pathway may mediate motor recovery in patients who undergo hemispherectomy early in life and in children with hemiplegic cerebral palsy, but it remains to be determined if it plays a significant role in the recovery of adult stroke. One of the challenges in stroke recovery is to identify which of the many neuroimaging and neurophysiological changes demonstrated are important in mediating recovery. The mechanism of plasticity probably differs depending on the time frame. Rapid changes in motor representations within minutes are likely due to unmasking of latent synapses involving modulation of GABAergic inhibition. Changes over a longer time likely involve other additional mechanisms such as long-term potentiation, axonal regeneration and sprouting. While cross-modal plasticity appears to be useful in enhancing the perceptions of compensatory sensory modalities, the functional significance of motor reorganization following peripheral injury remains unclear and some forms of sensory reorganization may even be associated with deleterious consequences like phantom pain. An understanding of the mechanism of plasticity will help to develop treatment programs to improve functional outcome.


The Journal of Physiology | 2007

Brain-computer interfaces : communication and restoration of movement in paralysis

Niels Birbaumer; Leonardo G. Cohen

The review describes the status of brain–computer or brain–machine interface research. We focus on non‐invasive brain–computer interfaces (BCIs) and their clinical utility for direct brain communication in paralysis and motor restoration in stroke. A large gap between the promises of invasive animal and human BCI preparations and the clinical reality characterizes the literature: while intact monkeys learn to execute more or less complex upper limb movements with spike patterns from motor brain regions alone without concomitant peripheral motor activity usually after extensive training, clinical applications in human diseases such as amyotrophic lateral sclerosis and paralysis from stroke or spinal cord lesions show only limited success, with the exception of verbal communication in paralysed and locked‐in patients. BCIs based on electroencephalographic potentials or oscillations are ready to undergo large clinical studies and commercial production as an adjunct or a major assisted communication device for paralysed and locked‐in patients. However, attempts to train completely locked‐in patients with BCI communication after entering the complete locked‐in state with no remaining eye movement failed. We propose that a lack of contingencies between goal directed thoughts and intentions may be at the heart of this problem. Experiments with chronically curarized rats support our hypothesis; operant conditioning and voluntary control of autonomic physiological functions turned out to be impossible in this preparation. In addition to assisted communication, BCIs consisting of operant learning of EEG slow cortical potentials and sensorimotor rhythm were demonstrated to be successful in drug resistant focal epilepsy and attention deficit disorder. First studies of non‐invasive BCIs using sensorimotor rhythm of the EEG and MEG in restoration of paralysed hand movements in chronic stroke and single cases of high spinal cord lesions show some promise, but need extensive evaluation in well‐controlled experiments. Invasive BMIs based on neuronal spike patterns, local field potentials or electrocorticogram may constitute the strategy of choice in severe cases of stroke and spinal cord paralysis. Future directions of BCI research should include the regulation of brain metabolism and blood flow and electrical and magnetic stimulation of the human brain (invasive and non‐invasive). A series of studies using BOLD response regulation with functional magnetic resonance imaging (fMRI) and near infrared spectroscopy demonstrated a tight correlation between voluntary changes in brain metabolism and behaviour.


Journal of Clinical Neurophysiology | 1992

Optimal focal transcranial magnetic activation of the human motor cortex: effects of coil orientation, shape of the induced current pulse, and stimulus intensity.

Joaquim P. Brasil-Neto; Leonardo G. Cohen; Marcela Panizza; Jan Nilsson; Bradley J. Roth; Mark Hallett

We studied the effects of coil orientation, stimulus intensity, and shape of the induced current pulse on the amplitudes of motor evoked potentials in the left abductor pollicis brevis of 10 normal adults who had transcranial magnetic stimulation. The optimal direction of currents induced in the brain is approximately perpendicular to the central sulcus, flowing diagonally from back to front. The most effective coil orientation depends on the shape of the induced current pulse and. when the first and second phases of the pulse are of similar size, also on the intensity of stimulation. Optimal mapping of the human motor cortex with magnetic stimulation requires knowledge of the influences of all these factors.


The Journal of Physiology | 2002

Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation

Katja Stefan; Erwin Kunesch; Reiner Benecke; Leonardo G. Cohen; Joseph Classen

Associative stimulation has been shown to enhance excitability in the human motor cortex ( Stefan et al. 2000 ); however, little is known about the underlying mechanisms. An interventional paired associative stimulation (IPAS) was employed consisting of repetitive application of single afferent electric stimuli, delivered to the right median nerve, paired with single pulse transcranial magnetic stimulation (TMS) over the optimal site for activation of the abductor pollicis brevis muscle (APB) to generate approximately synchronous events in the primary motor cortex. Compared to baseline, motor evoked potentials (MEPs) induced by unconditioned, single TMS pulses increased after IPAS. By contrast, intracortical inhibition, assessed using (i) a suprathreshold test TMS pulse conditioned by a subthreshold TMS pulse delivered 3 ms before the test pulse, and (ii) a suprathreshold test TMS pulse conditioned by afferent median nerve stimulation delivered 25 ms before the TMS pulse, remained unchanged when assessed with appropriately matching test stimulus intensities. The increase of single‐pulse TMS‐evoked MEP amplitudes was blocked when IPAS was performed under the influence of dextromethorphan, an N‐methyl‐d‐aspartate (NMDA) receptor antagonist known to block long‐term potentiation (LTP). Further experiments employing the double‐shock TMS protocol suggested that the afferent pulse, as one component of the IPAS protocol, induced disinhibition of the primary motor cortex at the time when the TMS pulse, as the other component of IPAS, was delivered. Together, these findings support the view that LTP‐like mechanisms may underlie the cortical plasticity induced by IPAS.


Clinical Neurophysiology | 2015

Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee

Paolo Maria Rossini; David Burke; Robert Chen; Leonardo G. Cohen; Zafiris J. Daskalakis; R. Di Iorio; V. Di Lazzaro; Florinda Ferreri; Paul B. Fitzgerald; Mark S. George; Mark Hallett; Jean-Pascal Lefaucheur; Berthold Langguth; Carlo Miniussi; Michael A. Nitsche; Alvaro Pascual-Leone; Walter Paulus; Simone Rossi; John C. Rothwell; Hartwig R. Siebner; Yoshikazu Ugawa; Vincent Walsh; Ulf Ziemann

These guidelines provide an up-date of previous IFCN report on “Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application” (Rossini et al., 1994). A new Committee, composed of international experts, some of whom were in the panel of the 1994 “Report”, was selected to produce a current state-of-the-art review of non-invasive stimulation both for clinical application and research in neuroscience. Since 1994, the international scientific community has seen a rapid increase in non-invasive brain stimulation in studying cognition, brain–behavior relationship and pathophysiology of various neurologic and psychiatric disorders. New paradigms of stimulation and new techniques have been developed. Furthermore, a large number of studies and clinical trials have demonstrated potential therapeutic applications of non-invasive brain stimulation, especially for TMS. Recent guidelines can be found in the literature covering specific aspects of non-invasive brain stimulation, such as safety (Rossi et al., 2009), methodology (Groppa et al., 2012) and therapeutic applications (Lefaucheur et al., 2014). This up-dated review covers theoretical, physiological and practical aspects of non-invasive stimulation of brain, spinal cord, nerve roots and peripheral nerves in the light of more updated knowledge, and include some recent extensions and developments.

Collaboration


Dive into the Leonardo G. Cohen's collaboration.

Top Co-Authors

Avatar

Mark Hallett

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Friedhelm C. Hummel

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pablo Celnik

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Alvaro Pascual-Leone

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge