Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leonardo Mariño-Ramírez is active.

Publication


Featured researches published by Leonardo Mariño-Ramírez.


Genetics | 2006

Origin and evolution of human microRNAs from transposable elements

Jittima Piriyapongsa; Leonardo Mariño-Ramírez; I. King Jordan

We sought to evaluate the extent of the contribution of transposable elements (TEs) to human microRNA (miRNA) genes along with the evolutionary dynamics of TE-derived human miRNAs. We found 55 experimentally characterized human miRNA genes that are derived from TEs, and these TE-derived miRNAs have the potential to regulate thousands of human genes. Sequence comparisons revealed that TE-derived human miRNAs are less conserved, on average, than non-TE-derived miRNAs. However, there are 18 TE-derived miRNAs that are relatively conserved, and 14 of these are related to the ancient L2 and MIR families. Comparison of miRNA vs. mRNA expression patterns for TE-derived miRNAs and their putative target genes showed numerous cases of anti-correlated expression that are consistent with regulation via mRNA degradation. In addition to the known human miRNAs that we show to be derived from TE sequences, we predict an additional 85 novel TE-derived miRNA genes. TE sequences are typically disregarded in genomic surveys for miRNA genes and target sites; this is a mistake. Our results indicate that TEs provide a natural mechanism for the origination miRNAs that can contribute to regulatory divergence between species as well as a rich source for the discovery of as yet unknown miRNA genes.


Expert Review of Proteomics | 2005

Histone structure and nucleosome stability

Leonardo Mariño-Ramírez; Maricel G. Kann; Benjamin A. Shoemaker; David Landsman

Histone proteins play essential structural and functional roles in the transition between active and inactive chromatin states. Although histones have a high degree of conservation due to constraints to maintain the overall structure of the nucleosomal octameric core, variants have evolved to assume diverse roles in gene regulation and epigenetic silencing. Histone variants, post-translational modifications and interactions with chromatin remodeling complexes influence DNA replication, transcription, repair and recombination. The authors review recent findings on the structure of chromatin that confirm previous interparticle interactions observed in crystal structures.


BMC Evolutionary Biology | 2006

Global similarity and local divergence in human and mouse gene co-expression networks

Panayiotis Tsaparas; Leonardo Mariño-Ramírez; Olivier Bodenreider; Eugene V. Koonin; I. King Jordan

BackgroundA genome-wide comparative analysis of human and mouse gene expression patterns was performed in order to evaluate the evolutionary divergence of mammalian gene expression. Tissue-specific expression profiles were analyzed for 9,105 human-mouse orthologous gene pairs across 28 tissues. Expression profiles were resolved into species-specific coexpression networks, and the topological properties of the networks were compared between species.ResultsAt the global level, the topological properties of the human and mouse gene coexpression networks are, essentially, identical. For instance, both networks have topologies with small-world and scale-free properties as well as closely similar average node degrees, clustering coefficients, and path lengths. However, the human and mouse coexpression networks are highly divergent at the local level: only a small fraction (<10%) of coexpressed gene pair relationships are conserved between the two species. A series of controls for experimental and biological variance show that most of this divergence does not result from experimental noise. We further show that, while the expression divergence between species is genuinely rapid, expression does not evolve free from selective (functional) constraint. Indeed, the coexpression networks analyzed here are demonstrably functionally coherent as indicated by the functional similarity of coexpressed gene pairs, and this pattern is most pronounced in the conserved human-mouse intersection network. Numerous dense network clusters show evidence of dedicated functions, such as spermatogenesis and immune response, that are clearly consistent with the coherence of the expression patterns of their constituent gene members.ConclusionThe dissonance between global versus local network divergence suggests that the interspecies similarity of the global network properties is of limited biological significance, at best, and that the biologically relevant aspects of the architectures of gene coexpression are specific and particular, rather than universal. Nevertheless, there is substantial evolutionary conservation of the local network structure which is compatible with the notion that gene coexpression networks are subject to purifying selection.


BMC Genomics | 2008

Evolutionary rates and patterns for human transcription factor binding sites derived from repetitive DNA

Nalini Polavarapu; Leonardo Mariño-Ramírez; David Landsman; John F. McDonald; I. King Jordan

BackgroundThe majority of human non-protein-coding DNA is made up of repetitive sequences, mainly transposable elements (TEs). It is becoming increasingly apparent that many of these repetitive DNA sequence elements encode gene regulatory functions. This fact has important evolutionary implications, since repetitive DNA is the most dynamic part of the genome. We set out to assess the evolutionary rate and pattern of experimentally characterized human transcription factor binding sites (TFBS) that are derived from repetitive versus non-repetitive DNA to test whether repeat-derived TFBS are in fact rapidly evolving. We also evaluated the position-specific patterns of variation among TFBS to look for signs of functional constraint on TFBS derived from repetitive and non-repetitive DNA.ResultsWe found numerous experimentally characterized TFBS in the human genome, 7–10% of all mapped sites, which are derived from repetitive DNA sequences including simple sequence repeats (SSRs) and TEs. TE-derived TFBS sequences are far less conserved between species than TFBS derived from SSRs and non-repetitive DNA. Despite their rapid evolution, several lines of evidence indicate that TE-derived TFBS are functionally constrained. First of all, ancient TE families, such as MIR and L2, are enriched for TFBS relative to younger families like Alu and L1. Secondly, functionally important positions in TE-derived TFBS, specifically those residues thought to physically interact with their cognate protein binding factors (TF), are more evolutionarily conserved than adjacent TFBS positions. Finally, TE-derived TFBS show position-specific patterns of sequence variation that are highly distinct from random patterns and similar to the variation seen for non-repeat derived sequences of the same TFBS.ConclusionThe abundance of experimentally characterized human TFBS that are derived from repetitive DNA speaks to the substantial regulatory effects that this class of sequence has on the human genome. The unique evolutionary properties of repeat-derived TFBS are perhaps even more intriguing. TE-derived TFBS in particular, while clearly functionally constrained, evolve extremely rapidly relative to non-repeat derived sites. Such rapidly evolving TFBS are likely to confer species-specific regulatory phenotypes, i.e. divergent expression patterns, on the human evolutionary lineage. This result has practical implications with respect to the widespread use of evolutionary conservation as a surrogate for functionally relevant non-coding DNA. Most TE-derived TFBS would be missed using the kinds of sequence conservation-based screens, such as phylogenetic footprinting, that are used to help characterize non-coding DNA. Thus, the very TFBS that are most likely to yield human-specific characteristics will be neglected by the comparative genomic techniques that are currently de rigeur for the identification of novel regulatory sites.


Proteins | 2005

The histone database : A comprehensive resource for histones and histone fold-containing proteins

Leonardo Mariño-Ramírez; Benjamin Hsu; Andreas D. Baxevanis; David Landsman

TheThe Histone Database is a curated and searchable collection of full‐length sequences and structures of histones and nonhistone proteins containing histone‐like folds, compiled from major public databases. Several new histone fold‐containing proteins have been identified, including the huntingtin‐interacting protein HYPM. Additionally, based on the recent crystal structure of the Son of Sevenless protein, an interpretation of the sequence analysis of the histone fold domain is presented. The database contains an updated collection of multiple sequence alignments for the four core histones (H2A, H2B, H3, and H4) and the linker histones (H1/H5) from a total of 975 organisms. The database also contains information on the human histone gene complement and provides links to three‐dimensional structures of histone and histone fold‐containing proteins. The Histone Database is a comprehensive bioinformatics resource for the study of structure and function of histones and histone fold‐containing proteins. The database is available at http://research.nhgri.nih.gov/histones/. Proteins 2006.


Molecular and Cellular Biology | 2005

Global Regulation by the Yeast Spt10 Protein Is Mediated through Chromatin Structure and the Histone Upstream Activating Sequence Elements

Peter R. Eriksson; Geetu Mendiratta; Neil McLaughlin; Tyra G. Wolfsberg; Leonardo Mariño-Ramírez; Tiffany A. Pompa; Mohendra Jainerin; David Landsman; Chang-Hui Shen; David J. Clark

ABSTRACT The yeast SPT10 gene encodes a putative histone acetyltransferase (HAT) implicated as a global transcription regulator acting through basal promoters. Here we address the mechanism of this global regulation. Although microarray analysis confirmed that Spt10p is a global regulator, Spt10p was not detected at any of the most strongly affected genes in vivo. In contrast, the presence of Spt10p at the core histone gene promoters in vivo was confirmed. Since Spt10p activates the core histone genes, a shortage of histones could occur in spt10Δ cells, resulting in defective chromatin structure and a consequent activation of basal promoters. Consistent with this hypothesis, the spt10Δ phenotype can be rescued by extra copies of the histone genes and chromatin is poorly assembled in spt10Δ cells, as shown by irregular nucleosome spacing and reduced negative supercoiling of the endogenous 2μm plasmid. Furthermore, Spt10p binds specifically and highly cooperatively to pairs of upstream activating sequence elements in the core histone promoters [consensus sequence, (G/A)TTCCN6TTCNC], consistent with a direct role in histone gene regulation. No other high-affinity sites are predicted in the yeast genome. Thus, Spt10p is a sequence-specific activator of the histone genes, possessing a DNA-binding domain fused to a likely HAT domain.


Mobile Dna | 2010

Epigenetic histone modifications of human transposable elements: genome defense versus exaptation

Ahsan Huda; Leonardo Mariño-Ramírez; I. King Jordan

BackgroundTransposition is disruptive in nature and, thus, it is imperative for host genomes to evolve mechanisms that suppress the activity of transposable elements (TEs). At the same time, transposition also provides diverse sequences that can be exapted by host genomes as functional elements. These notions form the basis of two competing hypotheses pertaining to the role of epigenetic modifications of TEs in eukaryotic genomes: the genome defense hypothesis and the exaptation hypothesis. To date, all available evidence points to the genome defense hypothesis as the best explanation for the biological role of TE epigenetic modifications.ResultsWe evaluated several predictions generated by the genome defense hypothesis versus the exaptation hypothesis using recently characterized epigenetic histone modification data for the human genome. To this end, we mapped chromatin immunoprecipitation sequence tags from 38 histone modifications, characterized in CD4+ T cells, to the human genome and calculated their enrichment and depletion in all families of human TEs. We found that several of these families are significantly enriched or depleted for various histone modifications, both active and repressive. The enrichment of human TE families with active histone modifications is consistent with the exaptation hypothesis and stands in contrast to previous analyses that have found mammalian TEs to be exclusively repressively modified. Comparisons between TE families revealed that older families carry more histone modifications than younger ones, another observation consistent with the exaptation hypothesis. However, data from within family analyses on the relative ages of epigenetically modified elements are consistent with both the genome defense and exaptation hypotheses. Finally, TEs located proximal to genes carry more histone modifications than the ones that are distal to genes, as may be expected if epigenetically modified TEs help to regulate the expression of nearby host genes.ConclusionsWith a few exceptions, most of our findings support the exaptation hypothesis for the role of TE epigenetic modifications when vetted against the genome defense hypothesis. The recruitment of epigenetic modifications may represent an additional mechanism by which TEs can contribute to the regulatory functions of their host genomes.


Genome Biology | 2006

Multiple independent evolutionary solutions to core histone gene regulation

Leonardo Mariño-Ramírez; I. King Jordan; David Landsman

BackgroundCore histone genes are periodically expressed along the cell cycle and peak during S phase. Core histone gene expression is deeply evolutionarily conserved from the yeast Saccharomyces cerevisiae to human.ResultsWe evaluated the evolutionary dynamics of the specific regulatory mechanisms that give rise to the conserved histone regulatory phenotype. In contrast to the conservation of core histone gene expression patterns, the core histone regulatory machinery is highly divergent between species. There has been substantial evolutionary turnover of cis-regulatory sequence motifs along with the transcription factors that bind them. The regulatory mechanisms employed by members of the four core histone families are more similar within species than within gene families. The presence of species-specific histone regulatory mechanisms is opposite to what is seen at the protein sequence level. Core histone proteins are more similar within families, irrespective of their species of origin, than between families, which is consistent with the shared common ancestry of the members of individual histone families. Structure and sequence comparisons between histone families reveal that H2A and H2B form one related group whereas H3 and H4 form a distinct group, which is consistent with the nucleosome assembly dynamics.ConclusionThe dissonance between the evolutionary conservation of the core histone gene regulatory phenotypes and the divergence of their regulatory mechanisms indicates a highly dynamic mode of regulatory evolution. This distinct mode of regulatory evolution is probably facilitated by a solution space for promoter sequences, in terms of functionally viable cis-regulatory sites, that is substantially greater than that of protein sequences.


BMC Genomics | 2012

The Physalis peruviana leaf transcriptome: assembly, annotation and gene model prediction

Gina A. Garzón-Martínez; Z I Zhu; David Landsman; Luz Stella Barrero; Leonardo Mariño-Ramírez

BackgroundPhysalis peruviana commonly known as Cape gooseberry is a member of the Solanaceae family that has an increasing popularity due to its nutritional and medicinal values. A broad range of genomic tools is available for other Solanaceae, including tomato and potato. However, limited genomic resources are currently available for Cape gooseberry.ResultsWe report the generation of a total of 652,614 P. peruviana Expressed Sequence Tags (ESTs), using 454 GS FLX Titanium technology. ESTs, with an average length of 371 bp, were obtained from a normalized leaf cDNA library prepared using a Colombian commercial variety. De novo assembling was performed to generate a collection of 24,014 isotigs and 110,921 singletons, with an average length of 1,638 bp and 354 bp, respectively. Functional annotation was performed using NCBI’s BLAST tools and Blast2GO, which identified putative functions for 21,191 assembled sequences, including gene families involved in all the major biological processes and molecular functions as well as defense response and amino acid metabolism pathways. Gene model predictions in P. peruviana were obtained by using the genomes of Solanum lycopersicum (tomato) and Solanum tuberosum (potato). We predict 9,436 P. peruviana sequences with multiple-exon models and conserved intron positions with respect to the potato and tomato genomes. Additionally, to study species diversity we developed 5,971 SSR markers from assembled ESTs.ConclusionsWe present the first comprehensive analysis of the Physalis peruviana leaf transcriptome, which will provide valuable resources for development of genetic tools in the species. Assembled transcripts with gene models could serve as potential candidates for marker discovery with a variety of applications including: functional diversity, conservation and improvement to increase productivity and fruit quality. P. peruviana was estimated to be phylogenetically branched out before the divergence of five other Solanaceae family members, S. lycopersicum, S. tuberosum, Capsicum spp, S. melongena and Petunia spp.


Biology Direct | 2006

Transposable element derived DNaseI-hypersensitive sites in the human genome

Leonardo Mariño-Ramírez; I. King Jordan

BackgroundTransposable elements (TEs) are abundant genomic sequences that have been found to contribute to genome evolution in unexpected ways. Here, we characterize the evolutionary and functional characteristics of TE-derived human genome regulatory sequences uncovered by the high throughput mapping of DNaseI-hypersensitive (HS) sites.ResultsHuman genome TEs were found to contribute substantially to HS regulatory sequences characterized in CD4+ T cells: 23% of HS sites contain TE-derived sequences. While HS sites are far more evolutionarily conserved than non HS sites in the human genome, consistent with their functional importance, TE-derived HS sites are highly divergent. Nevertheless, TE-derived HS sites were shown to be functionally relevant in terms of driving gene expression in CD4+ T cells. Genes involved in immune response are statistically over-represented among genes with TE-derived HS sites. A number of genes with both TE-derived HS sites and immune tissue related expression patterns were found to encode proteins involved in immune response such as T cell specific receptor antigens and secreted cytokines as well as proteins with clinical relevance to HIV and cancer. Genes with TE-derived HS sites have higher average levels of sequence and expression divergence between human and mouse orthologs compared to genes with non TE-derived HS sites.ConclusionThe results reported here support the notion that TEs provide a specific genome-wide mechanism for generating functionally relevant gene regulatory divergence between evolutionary lineages.ReviewersThis article was reviewed by Wolfgang J. Miller (nominated by Jerzy Jurka), Itai Yanai and Mikhail S.Gelfand.

Collaboration


Dive into the Leonardo Mariño-Ramírez's collaboration.

Top Co-Authors

Avatar

David Landsman

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

I. King Jordan

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Lavanya Rishishwar

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

John L. Spouge

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Loren Hansen

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Andrew B. Conley

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Richa Agarwala

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Y. Gómez

University of Seville

View shared research outputs
Top Co-Authors

Avatar

Ahsan Huda

Georgia Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge