Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leonardo Scapozza is active.

Publication


Featured researches published by Leonardo Scapozza.


Nature Cell Biology | 2006

Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis.

Shida Yousefi; Remo Perozzo; Inès Schmid; Andrew Ziemiecki; Thomas Schaffner; Leonardo Scapozza; Thomas Brunner; Hans-Uwe Simon

Autophagy-related gene (Atg) 5 is a gene product required for the formation of autophagosomes. Here, we report that Atg5, in addition to the promotion of autophagy, enhances susceptibility towards apoptotic stimuli. Enforced expression of Atg5-sensitized tumour cells to anticancer drug treatment both in vitro and in vivo. In contrast, silencing the Atg5 gene with short interfering RNA (siRNA) resulted in partial resistance to chemotherapy. Apoptosis was associated with calpain-mediated Atg5 cleavage, resulting in an amino-terminal cleavage product with a relative molecular mass of 24,000 (Mr 24K). Atg5 cleavage was observed independent of the cell type and the apoptotic stimulus, suggesting that calpain activation and Atg5 cleavage are general phenomena in apoptotic cells. Truncated Atg5 translocated from the cytosol to mitochondria, associated with the anti-apoptotic molecule Bcl-xL and triggered cytochrome c release and caspase activation. Taken together, calpain-mediated Atg5 cleavage provokes apoptotic cell death, therefore, represents a molecular link between autophagy and apoptosis — a finding with potential importance for clinical anticancer therapies.


Lancet Oncology | 2003

Molecular mechanisms of resistance to imatinib in Philadelphia-chromosome-positive leukaemias

Carlo Gambacorti-Passerini; Rosalind H. Gunby; Rocco Piazza; Annamaria Galietta; Roberta Rostagno; Leonardo Scapozza

Imatinib (STI571 or CGP57148B) is an innovative treatment for tumours with a constitutively activated form of c-ABL, c-KIT, or PDGFR. Such tumours include Philadelphia-chromosome-positive (Ph-positive) leukaemias, gastrointestinal stromal tumours, and PDGFR-positive leukaemias. Diseases such as primary hypereosinophilia and dermatofibrosarcoma protuberans also seem to respond to imatinib. Clinical trials assessing the therapeutic effects of imatinib have shown that the drug is highly effective with few associated side-effects, achieving durable cytogenetic responses in many patients with chronic-phase BCR-ABL-positive leukaemias. However, the emergence of resistance, particularly in patients with acute leukaemias, has prompted intense research, and many are concerned about the future prospects for imatinib. The resistance has been found in patients with acute-phase disease, but may also occur in patients with chronic-phase disease. Two cellular mechanisms for resistance to imatinib have been identified: amplification of BCR-ABL gene and mutations in the catalytic domain of the protein. In addition, suboptimum inhibition of BCR-ABL in vivo could contribute to the selection of resistant cells. We have summarised all currently available data on resistance to imatinib, both published and unpublished, including the mechanisms of resistance identified so far, and their clinical relevance to the different forms of Ph-positive leukaemias is discussed. Furthermore, we discuss strategies to overcome or prevent the development of resistance.


Cancer Research | 2006

In vitro and in vivo activity of SKI-606, a novel Src-Abl inhibitor, against imatinib-resistant Bcr-Abl + neoplastic cells

Miriam Puttini; Addolorata Coluccia; Frank Boschelli; Loredana Cleris; Edoardo Marchesi; Arianna Donella-Deana; Shaheen Ahmed; Sara Redaelli; Rocco Piazza; Vera Magistroni; F Andreoni; Leonardo Scapozza; Franca Formelli; Carlo Gambacorti-Passerini

Resistance to imatinib represents an important scientific and clinical issue in chronic myelogenous leukemia. In the present study, the effects of the novel inhibitor SKI-606 on various models of resistance to imatinib were studied. SKI-606 proved to be an active inhibitor of Bcr-Abl in several chronic myelogenous leukemia cell lines and transfectants, with IC(50) values in the low nanomolar range, 1 to 2 logs lower than those obtained with imatinib. Cells expressing activated forms of KIT or platelet-derived growth factor receptor (PDGFR), two additional targets of imatinib, were unaffected by SKI-606, whereas activity was found against PIM2. SKI-606 retained activity in cells where resistance to imatinib was caused by BCR-ABL gene amplification and in three of four Bcr-Abl point mutants tested. In vivo experiments confirmed SKI-606 activity in models where resistance was not caused by mutations as well as in cells carrying the Y253F, E255K, and D276G mutations. Modeling considerations attribute the superior activity of SKI-606 to its ability to bind a conformation of Bcr-Abl different from imatinib.


Nature Biotechnology | 1999

Directed evolution of thymidine kinase for AZT phosphorylation using DNA family shuffling.

Fred C. Christians; Leonardo Scapozza; Andreas Crameri; Gerd Folkers; Willem P. C. Stemmer

The thymidine kinase (TK) genes from herpes simplex virus (HSV) types 1 and 2 were recombined in vitro with a technique called DNA family shuffling. A high-throughput robotic screen identified chimeras with an enhanced ability to phosphorylate zidovudine (AZT). Improved clones were combined, reshuffled, and screened on increasingly lower concentrations of AZT. After four rounds of shuffling and screening, two clones were isolated that sensitize Escherichia coli to 32-fold less AZT compared with HSV-1 TK and 16,000-fold less than HSV-2 TK. Both clones are hybrids derived from several crossover events between the two parental genes and carry several additional amino acid substitutions not found in either parent, including active site mutations. Kinetic measurements show that the chimeric enzymes had acquired reduced KM for AZT as well as decreased specificity for thymidine. In agreement with the kinetic data, molecular modeling suggests that the active sites of both evolved enzymes better accommodate the azido group of AZT at the expense of thymidine. Despite the overall similarity of the two chimeric enzymes, each contains key contributions from different parents in positions influencing substrate affinity. Such mutants could be useful for anti-HIV gene therapy, and similar directed-evolution approaches could improve other enzyme–prodrug combinations.


Journal of Receptors and Signal Transduction | 2004

Thermodynamics of protein-ligand interactions: history, presence, and future aspects.

Remo Perozzo; Gerd Folkers; Leonardo Scapozza

The understanding of molecular recognition processes of small ligands and biological macromolecules requires a complete characterization of the binding energetics and correlation of thermodynamic data with interacting structures involved. A quantitative description of the forces that govern molecular associations requires determination of changes of all thermodynamic parameters, including free energy of binding (ΔG), enthalpy (ΔH), and entropy (ΔS) of binding and the heat capacity change (ΔCp). A close insight into the binding process is of significant and practical interest, since it provides the fundamental know-how for development of structure-based molecular design strategies. The only direct method to measure the heat change during complex formation at constant temperature is provided by isothermal titration calorimetry (ITC). With this method one binding partner is titrated into a solution containing the interaction partner, thereby generating or absorbing heat. This heat is the direct observable that can be quantified by the calorimeter. The use of ITC has been limited due to the lack of sensitivity, but recent developments in instrument design permit to measure heat effects generated by nanomol (typically 10–100) amounts of reactants. ITC has emerged as the primary tool for characterizing interactions in terms of thermodynamic parameters. Because heat changes occur in almost all chemical and biochemical processes, ITC can be used for numerous applications, e.g., binding studies of antibody–antigen, protein–peptide, protein–protein, enzyme–inhibitor or enzyme–substrate, carbohydrate–protein, DNA–protein (and many more) interactions as well as enzyme kinetics. Under appropriate conditions data analysis from a single experiment yields ΔH, KB, the stoichiometry (n), ΔG and ΔS of binding. Moreover, ITC experiments performed at different temperatures yield the heat capacity change (ΔCp). The informational content of thermodynamic data is large, and it has been shown that it plays an important role in the elucidation of binding mechanisms and, through the link to structural data, also in rational drug design. In this review we will present a comprehensive overview to ITC by giving some historical background to calorimetry, outline some critical experimental and data analysis aspects, discuss the latest developments, and give three recent examples of studies published with respect to macromolecule–ligand interactions that have utilized ITC technology.


Journal of Experimental Medicine | 2008

Caspase-8 is activated by cathepsin D initiating neutrophil apoptosis during the resolution of inflammation

Sébastien Conus; Remo Perozzo; Thomas Reinheckel; Christoph Peters; Leonardo Scapozza; Shida Yousefi; Hans-Uwe Simon

In the resolution of inflammatory responses, neutrophils rapidly undergo apoptosis. We describe a new proapoptotic pathway in which cathepsin D directly activates caspase-8. Cathepsin D is released from azurophilic granules in neutrophils in a caspase-independent but reactive oxygen species–dependent manner. Under inflammatory conditions, the translocation of cathepsin D in the cytosol is blocked. Pharmacological or genetic inhibition of cathepsin D resulted in delayed caspase activation and reduced neutrophil apoptosis. Cathepsin D deficiency or lack of its translocation in the cytosol prolongs innate immune responses in experimental bacterial infection and in septic shock. Thus, we identified a new function of azurophilic granules that is in addition to their role in bacterial defense mechanisms: to regulate the life span of neutrophils and, therefore, the duration of innate immune responses through the release of cathepsin D.


Journal of the American Chemical Society | 2010

Single-molecule pulling simulations can discern active from inactive enzyme inhibitors.

Francesco Colizzi; Remo Perozzo; Leonardo Scapozza; Maurizio Recanatini; Andrea Cavalli

Understanding ligand-protein recognition and interaction processes is of primary importance for structure-based drug design. Traditionally, several approaches combining docking and molecular dynamics (MD) simulations have been exploited to investigate the physicochemical properties of complexes of pharmaceutical interest. Even if the geometric properties of a modeled protein-ligand complex can be well predicted by computational methods, it is challenging to rank a series of analogues in a consistent fashion with biological data. In the unique beta-hydroxyacyl-ACP dehydratase of Plasmodium falciparum (PfFabZ), the application of standard molecular docking and MD simulations was partially sufficient to shed light on the activity of previously discovered inhibitors. Complementing docking results with atomistic simulations in the steered molecular dynamics (SMD) framework, we devised an in silico approach to study molecular interactions and to compare the binding characteristics of ligand analogues. We hypothesized an interaction model that both explained the biological activity of known ligands, and provided insight into designing novel enzyme inhibitors. Mimicking single-molecule pulling experiments, we used SMD-derived force profiles to discern active from inactive compounds for the first time. A new compound was designed and its biological activity toward the PfFabZ enzyme predicted. Finally, the computational predictions were experimentally confirmed, highlighting the robustness of the drug design approach presented herein.


Molecular Microbiology | 1999

The periplasmic domain of the histidine autokinase CitA functions as a highly specific citrate receptor

Sibylle Kaspar; Remo Perozzo; Stefan Reinelt; Margareta Meyer; Karin Pfister; Leonardo Scapozza; Michael Bott

The two‐component regulatory system CitA/CitB is essential for induction of the citrate fermentation genes in Klebsiella pneumoniae. CitA represents a membrane‐bound sensor kinase consisting of a periplasmic domain flanked by two transmembrane helices, a linker domain and the conserved kinase or transmitter domain. A fusion protein (MalE–CitAC) composed of the maltose‐binding protein and the CitA kinase domain (amino acids 327–547) showed constitutive autokinase activity and transferred the γ‐phosphate group of ATP to its cognate response regulator CitB. The autokinase activity of CitA was abolished by an H350L exchange, and phosphorylation of CitB was inhibited by a D56N exchange, indicating that H‐350 and D‐56 represent the phosphorylation sites of CitA and CitB respectively. In the presence of ATP, CitB–D56N formed a stable complex with MalE–CitAC. To analyse the sensory properties of CitA, the periplasmic domain (amino acids 45–176) was overproduced as a soluble, cytoplasmic protein with a C‐terminally attached histidine tag (CitAPHis). Purified CitAPHis bound citrate, but none of the other tri‐ and dicarboxylates tested, with high affinity (KD ≈ 5 μM at pH 7) in a 1:1 stoichiometry. As shown by isothermal titration calorimetry, the binding reaction was driven by the enthalpy change (ΔH = −76.3 kJ mol−1), whereas the entropy change was opposed (−TΔS = + 46.3 kJ mol−1). The pH dependency of the binding reaction indicated that the dianionic form H‐citrate2− is the citrate species recognized by CitAPHis. In the presence of Mg2+ ions, the dissociation constant increased significantly, suggesting that the Mg–citrate complex is not bound by CitAPHis. This work defines the periplasmic domain of CitA as a highly specific citrate receptor and elucidates the binding characteristics of CitAPHis.


PLOS Neglected Tropical Diseases | 2013

Naphthoquinone Derivatives Exert Their Antitrypanosomal Activity via a Multi-Target Mechanism

Simone Pieretti; Jurgen R. Haanstra; Muriel Mazet; Remo Perozzo; Federica Prati; Romana Fato; Giorgio Lenaz; Giovanni Capranico; Reto Brun; Barbara M. Bakker; Paul A. M. Michels; Leonardo Scapozza; Maria Laura Bolognesi; Andrea Cavalli

Background and Methodology Recently, we reported on a new class of naphthoquinone derivatives showing a promising anti-trypanosomatid profile in cell-based experiments. The lead of this series (B6, 2-phenoxy-1,4-naphthoquinone) showed an ED50 of 80 nM against Trypanosoma brucei rhodesiense, and a selectivity index of 74 with respect to mammalian cells. A multitarget profile for this compound is easily conceivable, because quinones, as natural products, serve plants as potent defense chemicals with an intrinsic multifunctional mechanism of action. To disclose such a multitarget profile of B6, we exploited a chemical proteomics approach. Principal Findings A functionalized congener of B6 was immobilized on a solid matrix and used to isolate target proteins from Trypanosoma brucei lysates. Mass analysis delivered two enzymes, i.e. glycosomal glycerol kinase and glycosomal glyceraldehyde-3-phosphate dehydrogenase, as potential molecular targets for B6. Both enzymes were recombinantly expressed and purified, and used for chemical validation. Indeed, B6 was able to inhibit both enzymes with IC50 values in the micromolar range. The multifunctional profile was further characterized in experiments using permeabilized Trypanosoma brucei cells and mitochondrial cell fractions. It turned out that B6 was also able to generate oxygen radicals, a mechanism that may additionally contribute to its observed potent trypanocidal activity. Conclusions and Significance Overall, B6 showed a multitarget mechanism of action, which provides a molecular explanation of its promising anti-trypanosomatid activity. Furthermore, the forward chemical genetics approach here applied may be viable in the molecular characterization of novel multitarget ligands.


Journal of Receptors and Signal Transduction | 2003

Tautomerism in computer-aided drug design.

Pavel Pospisil; Patrick Ballmer; Leonardo Scapozza; Gerd Folkers

Abstract Tautomers are often disregarded in computer‐aided molecular modeling applications. Little is known about the different tautomeric states of a molecule and they are rarely registered in chemical databases. Tautomeric forms of a molecule differ in shape, functional groups, surface, and hydrogen‐bonding pattern. Calculation of physical–chemical properties and molecular descriptors differ from one tautomeric state to the other as it is demonstrated with an example of the log P calculation, similarity index, and the complementarity pattern to the targeted protein. Considering tautomery in ligand–protein interactions therefore has a significant impact on the prediction of the ligand binding using various docking techniques. This article points on hitherto unaddressed issue of tautomerism in computer‐aided drug design.

Collaboration


Dive into the Leonardo Scapozza's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luca Mologni

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christine Wurth

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge